БЕСКОНЕЧНОЕ

Найдено 10 определений
Показать: [все] [проще] [сложнее]

Автор: [российский] [зарубежный] Время: [советское] [постсоветское] [современное]

Бесконечный
не имеющий начала и конца, предела; безграничный, беспредельный.

Источник: Начала современного естествознания: тезаурус

Бесконечный

Совокупность элементов является бесконечной, когда в качестве составных частей она содержит другие совокупности, которые имеют точно такое же число элементов.

Источник: Философский словарь разума, материи, морали

БЕСКОНЕЧНОЕ
не имеющее конца и пределов; непомерно длинное, не прекращающееся. В философии — категория, обозначающая то, конец чего не может мыслиться и границы чего нельзя усмотреть. В этом смысле бесконечным является пространство и время, т.к. любая граница, которую мы для них устанавливаем, есть только граница нашего знания.

Источник: Философско-терминологический словарь 2004

БЕСКОНЕЧНОЕ
философская категория: то, конец чего не может мыслиться, границы чего нельзя усмотреть. В этом смысле бесконечным является пространство и время, ибо любая граница, которую мы для них устанавливаем или отменяем, есть только граница знания, познания наших чувств и рассудка. Слова: "трансфинитное" (абсолютная бесконечная тотальность), "инфинитное" (не имеющее конца), "индефинитное" (неограниченное) и "ickommensurable" (несоизмеримое) выражают приблизительно то же самое, что и "бесконечное". В математике (теория множеств) понятие "бесконечность", которым специально занимались Больцано и Кантор, имеет особый смысл. Идею бесконечности можно найти уже в спекуляциях древних индийцев. Большинство греч. философов считало, что мир конечен и ограничен твердым небесным сводом. Той же точки зрения придерживается христианство. Только Николай Кузанский и Джордано Бруно стали опять говорить о бесконечности мира.

Источник: Философский энциклопедический словарь

БЕСКОНЕЧНОЕ
филос. категория, характеризующая неисчерпаемость материи и движения, многообразие явлений и предметов материального мира, форм и тенденций его развития. Признавая объективное существование Б. в природе, диалектич. материализм отвергает свойственные идеализму отделение Б. от материи, сведение его к продукту мыслит. деятельности либо толкование его как атрибута некоего «сверхприродного бытия», недоступного человеч. познанию.
Глубокий филос. анализ проблемы Б. принадлежит Гегелю, к-рый различал истинную (качественную) и «дурную» бесконечности (как безграничное увеличение количества) и связывал категорию Б. с развитием. Материалистически переосмыслив гегелевские идеи, классики марксизма-ленинизма раскрыли противоречивую природу Б., его диалектич. взаимосвязь с конечным и всеобщим. Как писал Ф. Энгельс, «... форма всеобщности есть форма внутренней завершенности и тем самым бесконечности; она есть соединение многих конечных вещей в бесконечное» (Маркс К. иЭнгельс Ф., Соч., т. 20, с. 548-49). Форма проявления Б.- конечное, через познание конечного наука идет ко все большему раскрытию Б. в материальном мире. См. также Вечность.
К а ? м и н А. С., Познание Б., М., 1981.

Источник: Советский философский словарь

Бесконечное
вещь, вне которой ничего нет. По [2] бесконечное - это совершенно другое качество, отличное от конечного.
Математики говорят о бесконечно большом (то, что больше любой наперед заданной вещи) и бесконечно малом (то, что меньше любой наперед заданной вещи), то есть характеризуют бесконечность косвенным методом - процессом сравнения, а не самим сравнением.
Встретившись с понятиями бесконечность и вечность "человек, задумывающийся" долго ломает голову и становится поэтом или философом, "человек, незадумывающийся" - общественным деятелем, а жизнь расставляет их по своим местам.
Иногда бесконечность не определяют, но представляют как не имеющее границ нечто - подобие шара, по поверхности которого можно двигаться в любую сторону как угодно долго, например, во Вселенной, начав двигаться в каком-либо направлении, попадешь в ту же точку, только с другой стороны. Причем, учитывая, что звезды и все прочее во Вселенной непрерывно движутся, то, оказавшись даже в том же месте пространства, узнать его нельзя, так как все переменится: продолжая аналогию, можно сказать, что рисунок на поверхности шара непрерывно изменяется.
В нашем понимании бесконечность - это свойство чего-то, например Пространства.
Ассоциативный блок.
Последнее определение вызывает ощущение отсутствия мысли. Что это такое - свойство?

Источник: Теоретические аспекты и основы экологической проблемы: толкователь слов и идиоматических выражений

БЕСКОНЕЧНОЕ
(unendlich) — то, конец чего не может мыслиться; то, границы чего нельзя усмотреть. В этом смысле бесконечным является пространство и время, ибо любая граница, которую мы для них устанавливаем или отменяем, является только границей знания, познания наших чувств и нашего рассудка. Слова «трансфинитное» (абсолютная бесконечная тотальность), «инфинитное» (не имеющее конца), «индефинитное» (неограниченное) и «inkommensurable» (несоизмеримое) выражают приблизительно то же самое, что и «бесконечное». В математике (теория множеств, геометрия) понятие «бесконечность», которым специально занимались Больцано и Кантор, имеет особый смысл. Идею бесконечности можно найти уже в спекуляциях древних индийцев. Для греческих философов мир был преимущественно бесконечен, для христианства, напротив, конечен и ограничен твердым небесным сводом. Устранить открытое устремление мысли к бесконечному помогло представление о Боге, приписывающее лишь ему одному предикаты бесконечности. Только Николай Кузанский и Джордано Бруно стали опять говорить о бесконечности мира. Бесконечно большое (соответственно — бесконечно малое) определяется в школьной математике как то, что мыслится постоянно увеличивающимся, в сопоставлении с самым большим, которое предстает фиксированным, при этом движение мысли (как бы по натуральному числовому ряду) воспринимается как бесконечное. В. Bolzano. Paradoxien des U.en, 1851; К. Gutberiet. Das U.e metaphysisch u. mathematisch betrachtet, 1878; G. Meglio. La filosofia dell’ infinito, Milano, 1951; H. Meschkowski (Hg.). Das Problem des U.en, 1974.

Источник: Философский словарь [Пер. с нем.] Под ред. Г. Шишкоффа. Издательство М. Иностранная литература. 1961

Бесконечное
Этимология слова достаточно прозрачна: бесконечное есть то, что не имеет конца, предела (finis), границы. Не следует путать бесконечное с неопределенным, ибо последнее представляет собой то, что не имеет известного или доступного познанию предела.
Самые удобные примеры бесконечного предоставляет нам математика. Каждый понимает, что последовательность чисел бесконечна – ведь к самому большому числу всегда можно прибавить еще какое‑то число. Необходимо отметить при этом, что часть бесконечного множества не обязательно бесконечна (например, количество целых чисел от 3 до 12 – конечно), но может быть бесконечной (последовательность четных чисел так же бесконечна, как и последовательность целых чисел, хотя первая представляет собой часть второй). Таким образом, бесконечное множество обладает следующей исключительной особенностью, позволяющей дать ей математическое определение: оно может быть представлено в биекции (взаимно однозначном соответствии) по меньшей мере с одним из его строгих подмножеств. Так, любое целое число может быть поставлено в отношения взаимной однозначности с квадратом этого числа (этот пример принадлежит Галилею), даже если бесконечная последовательность полных квадратов является лишь подмножеством последовательности целых чисел. Из чего вытекает, что целое в бесконечности не обязательно больше той или иной из его частей (поскольку и часть может быть бесконечной). Это позволяет нам методом от противного дать определение конечному. Конечным является всякое множество, которое необходимо больше одного из его строгих подмножеств (т. е. подмножеств, не являющихся самим множеством).
Есть ли примеры не из области математики? Первое, что приходит в голову, это, конечно, Бог, о котором Декарт говорил, что он, и только он, бесконечен в прямом смысле слова, ибо не имеет никаких границ и пределов. Если применить к понятию Бога изложенное выше рассуждение, то окажется, что Бог не обязательно больше той или иной из своих частей – Бог Троицы, например, не обязательно больше, чем каждое из Лиц, составляющих единство его сущности (во всяком случае, если допустить, что каждая из ипостасей Бога бесконечна). Что, разумеется, никоим образом не доказывает, что Бог есть и что он един в трех лицах.
Что касается примеров эмпирического характера, то здесь мы пасуем. Дело в том, что опыт имеет дело только с конечным или с неопределенным. Можно, конечно, вспомнить знаменитое определение Паскаля, по мнению многих относящееся к Богу (что не случайно), хотя сам Паскаль сформулировал его применительно к универсуму, воспользовавшись, правда, традиционной метафорой: «Это бесконечная сфера, центр которой везде, окружность – нигде» («Мысли», 199–72). К сожалению, подобная бесконечность, впрочем сомнительная, известна нам лишь в форме идеи, но никак не из опыта.

Источник: Философский словарь.

БЕСКОНЕЧНОЕ
философская категория для характеристики бытия в его целостности и структурной расчлененности, его пространственных и временных, качественных и количественных свойств, видов и форм движения и развития. Проблема Б. была поставлена в самых первых учениях различных направлений мировой философии, и впоследствии постоянно обогащалась достижениями математики, астрономии, физики и других естественных наук. В европейской философии одним из первых к проблеме Б. обратился Анаксимандр в своем учении о существовании "апейрона" (беспредельного). Согласно же Платону, "сросшееся во единое" предел (конечное) и беспредельность Б. являются началами, заключенными в "вечно сущем". Понятие Б. подверглось серьезной критике в учении Зенона из Элей, который против представления о множестве вещей выдвинул ряд апорий, имея целью защитить и лучше обосновать точку зрения своего учителя Парменида, утверждавшего, что бытие едино, неподвижно и неизменно. Основным аргументом против множественности вещей у Зенона является необходимость (в случае признания этой множественности) одновременного признания вещей бесконечно малыми (т.к. их можно было бы делить до бесконечности) и бесконечно большими (т.к. не было бы конца для накопления все новых и новых частей). В апориях против Б. (против множественности вещей), как и в апориях против движения, Зенон обнаружил действительную противоречивость этих понятий и на этом основании отверг их. Анаксагор выдвинул учение о "гомеомериях", неразрушимых элементах ("подобночастных"), которых, вопреки Эмпедоклу, он признавал бесконечное количество и, вопреки Демокриту, считал бесконечно делимыми. Анаксагор предвосхитил современное математическое учение о бесконечных множествах, в которых часть может быть не только конечной, но и бесконечной (примером такого бесконечного множества является натуральный ряд чисел, частью которого является ряд четных (или нечетных) чисел, который тоже бесконечен). В математике учение Анаксагора нашло благоприятную почву благодаря открытию пифагорейцами несоизмеримых величин — величин, которые не могут быть представлены рациональными числами: открытие иррациональных чисел, напр. Аристотель отчетливо различал два вида бесконечности: потенциальную и актуальную. Создатель формальной логики, законы которой отказывают противоречию на право быть характеристикой адекватного миру мышления, Аристотель не признавал актуальную бесконечность, поскольку ее понятие противоречиво. В средневековой философии обращает на себя внимание диалектика Б. и конечного, развиваемая Николаем Кузанским. В бесконечности сливаются противоположности: диаметр окружности, являющийся отрезком прямой (как и вписанный в круг треугольник), сливается с самой окружностью, если сделать ее бесконечно большой. Эти идеи были восприняты и развиты Бруно в его учении о бесконечности миров во Вселенной, подобных земной жизни. Поддерживая и аргументируя мысль о бесконечной протяженности материальной субстанции Декарта, Спиноза бесконечность субстанции основывал на абсолютном характере ее существования. Преодолевая "дурную" бесконечность причинно-следственных связей, Спиноза приходит к пониманию природы как "причины самой себя". Английский материализм 17-18 вв. в лице Гоббса и Локка отверг тезис о бесконечной протяженности субстанции. Кант, рассматривая связь Б. с конечным, понимал отношение этих категорий как антиномию чистого разума, как свидетельство его ограниченности и бессилия. Гегель, упрекая Канта в субъективизме и агностицизме, выступил с попыткой создать подлинно диалектическую концепцию Б. Диалектическое единство конечного и Б., по Гегелю, служит тем мостом, по которому человечество от познания конечного идет к познанию Б. Но Гегель отказывает конечному в подлинной объективности, конечное — лишь отблеск бесконечной идеи. Высмеивая и критикуя "дурную" бесконечность, образом которой является прямая линия, неограниченно продолжающаяся в обе стороны, Гегель выступил за "истинную" Б., образом которой для него является круг, линия всецело наличная и замкнутая на себя. В рамках марксизма проблема Б. считалась составной частью всех важнейших вопросов философии — о сущности внешнего мира и его развития, сущности человека и его познания и т.п. Б. (вместе с конечным) трактавалась как атрибут материи. Логический аспект проблемы Б. был представлен в понятии диалектической логики "Б. логическое" (С. Церетели). Категория Б. входит в понятийный аппарат современного неотомизма, в контексте идеи о бесконечности интерпретаций входит в философскую парадигму постмодерна.
Г.В. Беляев

Источник: Новейший философский словарь

БЕСКОНЕЧНОЕ (бесконечность)
философское понятие, обозначающее безграничность и беспредельность как в бытийственном, так и в познавательном смысле. Вопрос о бесконечном возникает на всем протяжении истории культуры в самых разнообразных формах. Одна из самых непосредственных—проблема бесконечности (или конечности) мирового пространства, времени, количества вещей в мире. Сюда же относится и вопрос о возможности бесконечного деления континуума, выделения в нем точек. Наконец, более изощренной логической техники требует обсуждение вопроса о существовании разных «типов» бесконечного. Вопрос о логической и онтологической природе бесконечности, о ее статусе в Боге и в тварном мире получал разные решения и обоснования в философии, истории науки и теологии.
АКТУАЛЬНАЯ И ПОТЕНЦИАЛЬНАЯ БЕСКОНЕЧНОСТЬ. Русское слово «бесконечное» имеет смысл отрицания: бес-конечное есть не конечное (аналогично и лат. infinitum). Но это отрицание можно брать двояко: или как частичное отрицание—то, что может превзойти любое конечное, или как полное отрицание—то, что актуально. превосходит любое конечное. Уже в схоластике 13—14 вв. (В. Шервуд, В. Хейтесбери) это различие осознается и обозначается (как синкатегорематическая и категорематическая бесконечность соответственно). Из схоластики же (Григорий из Римини) идет и другое наименование этих двух разных подходов к бесконечному — потенциальная и актуальная бесконечность. Это различение было исходным пунктом и у создателя теории множеств Г. Кантора. Бесконечность, по Кантору, можно брать или как процесс—как увеличение, напр. натуральных чисел, удвоение длины отрезка, либо, наоборот, как уменьшение, деление данного отрезка на все более мелкие части,—или как актуально данное законченное множество (или величину). Бесконечность как процесс не является, по Кантору, бесконечностью в собственном смысле: в каждой фазе этого процесса, хотя и безграничного, мы имеем дело лишь с конечной величиной, а в целом—с переменной конечной величиной. Эта «несобственная бесконечность» и называется потенциальной бесконечностью. Если же мы берем бесконечное множество как нечто целое, актуально данное, не связанное ни с каким процессом, как, напр., в случае, если мы рассматриваем множество всех натуральных чисел или когда мы рассматриваем завершенный результат бесконечного деления отрезка на более мелкие части (как бы ни парадоксально было предположение подобного рассмотрения), в этом случае имеем дело с собственно бесконечным, или с актуальной бесконечностью. Заслугой Кантора была его критика имеющих тысячелетнюю историю аргументов против существования бесконечности, основанных нередко на смешении актуальной и потенциальной бесконечности.
Таковы были прежде всего аргументы, восходящие к Аристотелю. Так, напр., когда говорилось, что понятие бесконечности противоречиво, т. к., с одной стороны, оно должно представлять собой определенное количество, а с другой —любое количество превосходить, то, как объяснял Кантор, здесь налицо было смешение понятий актуально и потенциально бесконечного. Именно последнее, рассматриваемое как процесс, превосходит любое конечное количество. Если же мы рассматриваем актуально бесконечное множество, то вопрос о его количественной мере и его соотношении с конечными числами должен уже решаться специальным образом.
БЕСКОНЕЧНОЕ В ИСТОРИИ ФИЛОСОФИИ. Античная мысль в основном рассматривает бесконечное как неоформленное, как не ставшее и, следовательно, несовершенное. В пифагорейском списке противоположностей бесконечное стоит на стороне дурного (злого). Бытие в античной мысли связано с категорией меры и предела. Бесконечное выступает как беспредельное, безграничное, почти не существующее и потому есть нечто близкое к хаосу, а иногда и отождествляется с ним. Бесконечное сближается у Платона и Аристотеля с категорией материи как бесформенным и в силу этого как бы несуществующим. Бытие вещи доставляется идеей (или формой), которая ограничивает бесконечное, осуществляя «вписывание» веши в упорядоченное единство Космоса.
В то же время в античной философии были мыслители, которые более позитивно используют категорию бесконечного. Прежде всего к ним относится Анаксимавдр, у которого главным началом космологии служит алейрон (греч. йие1роу—букв. без-граничное), из которого возникают и в который возвращаются все вещи (однако по известным фрагментам не совсем ясно, является ли алейрон высшим бытийственным началом иди только хаотической смесью основных элементов). Кроме того, здесь нужно назвать атомистов Левкиппа и Демокрита, у которых бесконечное пустое пространство содержит бесконечное количество атомов, образующих бесконечное количество миров. Однако господствующее отношение к бесконечному в античности все же иное, В окончательном виде оно было выражено Аристотелем. Для Аристотеля бесконечное существует только Потенциально как возможность безграничного изменения: «Вообще говоря, бесконечное существует таким образом, что всегда берется иное и иное, а взятое всегда бывает конечным, но всегда разным и разным. Так что бесконечное не следует брать как определенный предмет, например, как человека или дом, а в том смысле, как говорится о дне или состязании, бытие которых не есть какая-либо сущность, а всегда находится в возникновении и уничтожении, и хотя оно конечно, но всегда разное и разное» (Физика 206 а, 28—35). Не существует ни актуально бесконечного тела (конечен сам космос), ни бесконечной последовательности причин (т. к. в противном случае, по Аристотелю, отсутствовала бы первоначальная истинная причина движения). Актуально бесконечное не дано ни чувствам, ни уму. Потенциальная бесконечность реализуется у Аристотеля для чисел в направлении возрастания—натуральный ряд, а для величин—в направлении убывания: потенциально бесконечное деление данного отрезка. Античная математика тоже мыслит свои «прямые» и «плоскости» как конечные, хотя и произвольно большие отрезки или куски плоскостей (в отличие от новоевропейской математики, в которой уже с 17 в. начинают рассматривать бесконечные прямые, напр. в проективной геометрии).
В неоплатонизме не без влияния восточной мистики пробивает себе дорогу новое положительное понимание бесконечного. Переходной ступенью служили здесь философские взгляды Филона Александрийского, давшего эллинистическую транскрипцию библейского понимания Божества. Единое у Плотина, стоящее выше Ума и, следовательно, выше всякой определенности и формы, в частности числа, не может быть названо бесконечным. Но Ум Плотин уже называет бесконечным в следующих смыслах: в смысле его бесконечного могущества, его единства и его самодостаточности. Все сущее оказывается тем самым между двумя бесконечностями: актуальной бесконечностью Ума и потенциальной бесконечностью мэональной материи, лишенной границ и формы и получающей свои определения только через «отражения» совершенств высшего бытия.
Существенный перелом в отношении бесконечного происходит с утверждением в европейской культуре христианства. Не только христианский Бог в себе оказывается актуально бесконечным, но и творение, в особенности человек как «образ Божий», несет на себе (в различной мере) отпечаток совершенств Творца. Однако это понимание утверждается не сразу. У Оригена еще налицо сильнейшая зависимость от основных постулатов греческой мысли: даже Бог не сможет быть бесконечным, т. к. бесконечное не имеет формы и не мыслимо. По Оригену, высшее совершенство Бога и его конечность необходимо связаны. Но уже Августин задает вопрос: неужели Бог не может мыслить всех чисел (натуральный ряд) разом? Конечность Бога несовместима, по Августину, с божественным достоинством. В отношении же тварного мира сдвиг происходит еще позднее. У Альберта Великого и Фомы Аквинского еще полностью господствуют аристотелевские запреты: в мире не может существовать актуальная бесконечность. Даже точки континуума существуют в нем только потенциально. «Легализация» актуальной бесконечности в тварном мире исторически была связана с обсуждением природы человеческой души, сотворенной по образу Божьему. В какой степени божественные совершенства отразились в человеческой душе? Дунс Скот настаивал, что человеческая душа по своей природе превосходит ту конечность, которая характерна для всего тварного: ведь человеческая душа способна воспринимать божественную благодать, т. е. самого бесконечного Бога. Значит, ей дарована адекватная предмету восприятия бесконечная воспринимающая способность. Еще дальше идут мистики. Экхарт прямо учит, что в глубине человеческой души имеется нетварная божественная «искорка». Как соприродная Богу, эта «искорка», естественно, актуально бесконечна. Подобное понимание образа Божьего прокладывало дорогу пантеизму и не раз осуждалось Католической церковью. Кардинал Николай Кузанский развивает учение о совпадении абсолютного максимума и абсолютного минимума. В рамках этого учения бесконечное, абсолютный максимум становится «адекватной мерой» всех конечных вещей. Понимание соотношения бесконечного и конечного принципиально меняется по отношению к античному толкованию: если для последнего все конечное было актуальным, а бесконечное выступало лишь как потенциальное, то для Кузанца, наоборот, любая конечная вещь выступает как потенциальное ограничение актуально бесконечной божественной возможности — бытия (possest). Аналогично и в рамках пантеизма Спинозы оказывается, что omnis detenninatio est negatio (каждое определение есть отрицание): не через предел, не через ограничение бесформенной материи получают вещи свое бытие, а именно от подлежащей бесконечной божественной субстанции, внутри которой самоопределение выступает как частичная негация. Божественная субстанция-природа имеет бесконечные атрибуты, в т. ч. протяженность и длительность. Время же, число и мера являются только конечными, или потенциально бесконечными средствами воображения. В анализе проблемы бесконечного Спиноза предвосхищает подходы к бесконечному у создателя теории множеств Г. Кантора.
Спекулятивная теология Николая Кузанского служит также основанием представлений и о бесконечности Вселенной. Бог является «основанием» мира: то, что содержится в Боге «в свернутом виде», мир «разворачивает» в пространстве и времени. Пространственная протяженность мира и время его существования не могут быть конечными, потому что они «выражают» бесконечность Бога. Хотя мир не является бесконечным в том же смысле, как и Бог,—мир не есть все, что может быть,—тем не менее его привативная бесконечность (не infinitum, a Indetenninatum) включает в себя бесконечность пространства и времени. Пересмотр Коперником геоцентрической системы и полемический талант Бруно помогают этому тезису Кузанца стать в высшей степени популярным к 18 в.
Декарт также поддерживал идею беспредельности мира: хотя и «недопустимо рассуждать о бесконечном, но следует просто считать беспредельными вещи, у которых мы не усматриваем никаких границ,—такова протяженность мира, делимость частей материи, число звезд и т. д.» (Первоначала философии, ч. I). Кроме того, по Декарту, бесконечна человеческая воля, являющаяся существенным признаком образа Божьего в человеческом существе. Именно несоответствие конечности человеческого разума и бесконечности воли служит, по Декарту, причиной ложных суждений.
На фоне других философов 17 в. Лейбниц выступает как наиболее убежденный защитник существования актуальной бесконечности. Тема бесконечности обсуждалась Лейбницем в разных аспектах. Актуально бесконечно прежде всего количество субстанций—монад—в универсуме. Каждая часть материи представляет собой также актуально бесконечную совокупность монад. Устойчивость агрегатов этих монад связана с особыми принципами их подчинения и с законом предустановленной гармонии. «Всякую часть материи можно представить наподобие сада, полного растений, и пруда, полного рыб. Но каждая ветвь растения, каждый член животного, каждая капля его соков есть опять такой же сад или такой же пруд» (Монадология, 67). В свою очередь каждая монада представляет в своих восприятиях весь бесконечный универсум, бесконечный как в пространстве, так и во времени. Это понимание ведет Лейбница в психологии к формулировке концепции бесконечно-малых («подсознательных») восприятий. В математике же это приводит к особому пониманию структуры пространственного континуума и, наконец, к созданию дифференциального и интегрального исчислений. Лейбницевские идеи в отношении актуальной бесконечности остаются в высшей степени действенными и по существу непревзойденными все последующие три столетия.
Несмотря на то что молодой Кант еще всецело разделял лейбницевскую точку зрения в отношении актуальной бесконечности, позже его взгляды резко меняются. В «Критике чистого разума» в силу кантовской философии математики оказываются невозможны ни бесконечное число, ни бесконечная величина. Мир же в отношении своих пространственных и временных характеристик выступает ни как конечный, ни как бесконечный, а как indefmitum — неопределенный. У Фихте, по-своему разрабатывавшего идею Экхарга о причастности человеческого духа к божественной сущности, вся природа выступает уже как бледное отражение истинной бесконечности, заключенной в абсолютном «Я». Фихте учил о становлении нового мира, точнее, целой последовательности миров, но не через катастрофический онтологический разрыв христианской теологии («Второе пришествие»), а в результате органически развивающегося процесса деятельности абсолютного «Я». В этой от века сущей потенциально бесконечной деятельности божественная природа абсолютного «Я» все яснее приходит к осознанию своей актуальной бесконечности. У Гегеля конечное и бесконечное являются лишь двумя терминами в его диалектической триаде. Простое отрицание конечного дает лишь «дурную бесконечность»: никогда не завершающийся переход от одного конечного к другому и представляет собой лишь «долженствование бесконечного». Истинная бесконечность должна диалектически снять оба соотнесенных момента, быть некоторым становлением, которое одновременно есть и самораскрытие. Истинно бесконечен у Гегеля, собственно. Абсолютный дух, который одновременно и актуально бесконечен, и осуществляет свое развитие через мир конечных духов.
В 1851 вышла работа Больцано «Парадоксы бесконечного», в которой делается попытка опровергнуть традиционные возражения против актуально бесконечного. В ней обсуждались понятия, ставшие в дальнейшем главными и для Кантора: различение потенциальной и актуальной бесконечности, трансфинитного и абсолютного и ряд других.
В 20 в. философские дискуссии вокруг проблем бесконечности соотносятся с теорией множеств и проблемой оснований математики. Таковы, напр., феноменологический подход к проблемам теории множеств у О. Беккера (Becher O. Mathematische Existenz. Halle, 1927); интерпретация проблем теории множеств как выражения классического конфликта между аристотелевским концептуализмом и платонистской традицией в математике у Л. Брюнсвика (Brunschvicg L. Les etapes de la philosophie mathematique. P., 1922); рассмотрение канторовской иерархии бесконечного на фоне концепции всеединства у Б. П. Вышеславцева (Вышеславцев Б. П. Этика преображенного эроса. М., 1994).
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ И ЛОГИКЕ. Использование актуальной бесконечности в математике настойчиво стремятся легализовать со 2-й пол. 19 в. В этом процессе большую роль сыграли труды Б. Больцано, К. Вейерштрасса, Р. Дедекинда и в особенности Г. Кантора. В их работах было систематизировано употребление понятия бесконечности в европейской традиции, выделены его основные аспекты и была предложена (Кантором) беспрецедентно дерзкая конструкция «шкалы бесконечностей», ведущая от самых простых типов бесконечности до бесконечности в Боге. Несмотря на то что конструкции Кантора, ставшие основанием всей современной математики, привели к перманентному кризису этого основания, продолжавшемуся весь 20 в., теория множеств представляется зрелым плодом взаимодействия центральных философских тем европейской культурной традиции. Трагические коллизии мысли, связанные с историей т. н. парадоксов теории множеств, представляют собой своеобразное раскрытие и саморазоблачение тех титанических импульсов, которые сыграли существенную роль в становлении новоевропейской науки и цивилизации в 15—17 вв.
ТЕОРИЯ МНОЖЕСТВ КАНТОРА. Кантор развил определенную технику оперирования с актуально бесконечными множествами и построил определенный аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным—разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимно-однозначное Соответствие с элементами подмножества В множества В, а элементы множества В нельзя поставить во взаимнооднозначное соответствие с элементами А, то тогда говорят, что мощность множества В больше мощности множества А. Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства. Бесконечное множество оказывается эквивалентным своей части, напр. так, как это происходит в т. н. «парадоксе Галилея»: 1. 2, 3, 4, ..., n, I, I, I, I, I, I 2. 4, 6, 8, ..., 2n, ...Эти парадоксы были известны давно, и именно они, в частности, служили препятствием для рассмотрения актуально бесконечных множеств. То, что здесь просто сказывается специфика актуально бесконечного, объяснял в «Парадоксах бесконечного» Больцано. Дедекинд считал это свойство актуально бесконечных множеств характеристическим.
Кантор развивает арифметику кардинальных чисел. Суммой двух кардинальных чисел является мощность объединения соответствующих им множеств, произведением— мощность т. н. множества-произведения двух данных множеств и т. д. Важнейшим оказывается переход от данного множества к множеству-степени, т. е., по определению, к множеству всех подмножеств исходного множества. Кантор доказывает основополагающую для его теории теорему: мощность множества-степени больше мощности исходного множества. Если мощность исходного множества записать через а, то в соответствии с арифметикой кардинальных чисел мощность множества-степени будет 2", и мы имеем, следовательно, 2° >а.
Значит, переходя от некоторого бесконечного множества, напр. от множества всех натуральных чисел, имеющего мощность) (обозначение Кантора) к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и т. д., мы будем получать ряд множеств все более возрастающей мощности. Есть ли какой-то предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия.
Оперировать с бесконечными множествами, лишенными всякой дополнительной структуры, вообще говоря, невозможно. Поэтому Кантор ввел в рассмотрение упорядоченные множества, т. е. множества, для любых двух элементов которых определено отношение «больше» > (или «меньше»

Источник: Новая философская энциклопедия

Найдено научных статей по теме — 12

Читать PDF

Модернизм – конкретное или бесконечное?

Агеев Максим Александрович, Горбунова Валентина Сергеевна
В данной статье речь пойдет об архитектурном стиле модернизм. Разберем, как он появился. Для этого рассмотрим несколько примеров. Главной целью статьи является раскрытие полного смысла понятия модернизм.
Читать PDF

Богословие и культура: Как Бесконечное стало конечной данностью

Дэвид Хонер
Цель статьи – предоставить набросок возможного богословия культуры. Первая часть статьи посвящена исследованию различных библейско-богословских идей, обеспечивающих понимание культуры определенной парадигмой.
Читать PDF

Конечное и бесконечное в литературе переходного периода (памяти профессора Н. С. Лейтес)

Бочкарева Нина Станиславна
Обзор творчества ученого-германиста, теоретика романа ХХ в., профессора кафедры зарубежной литературы Пермского государственного университета с 1963 по 1992 г.
Читать PDF

Безусловное и бесконечное в поэзии Ольги Седаковой (на примере цикла «Китайское путешествие»)

Нарбекова Оксана Владимировна
В статье рассматривается тематика стихотворного цикла «Китайское путешествие» О. Седаковой, осмысление поэтом безусловного и бесконечного.
Читать PDF

Человеческое бытие как deus creatus: бесконечное как средоточие личностной системы ценностей (Никола

Готтлёбер Сюзан
Читать PDF

«Агата, или Бесконечное чтение» Маргерит Дюрас: к проблеме литературности в кино

Шулятьева Дина Владимировна
Статья рассматривает феномен литературности в кинематографе на материале кинотекста Маргерит Дюрас.
Читать PDF

Вечное и бесконечное как две схемы онтологии у Шеллинга

Николин В. В.
Освещается концепция Шеллинга, где вечное основано на тетраде, а бесконечное -на триаде, это две разные диалектические схемы. Первый тип Шеллинг называет своим, а второй приписывает Гегелю, по его мнению, исказившему его схему.
Читать PDF

Бесконечное и индивидуальное в философии религии И. Канта и Ф. Д. Э. Шлейермахера

Беляева Анастасия Владиславовна
Читать PDF

Энергетическое бесконечное множество как необходимая и достаточная основа Вселенной (гипотеза)

Голубчик В. Я.
Рассматривается иное, по сравнению с классическим, построение физики снизу – вверх от энергетического бестелесного бесконечного множества к веществу и взаимодействиям (полей).
Читать PDF

Переход конечного в истинно бесконечное

Даниленко Юрий Александрович
Работа посвящена диалектическому переходу категорий конечного в истинно бесконечное.
Читать PDF

БЕСКОНЕЧНАЯ ВОЙНА, ИЛИ СНОВА О ЙЕМЕНЕ

Исаев Л.
«Неприкосновенный запас», М., 2016 г., № 6 (110), с. 238-248.
Читать PDF

КУЛЬТОВАЯ КНИГА Даглас Хофштадтер Гёдель, Эшер, Бах: эта бесконечная гирлянда

Мациевский С. В.

Найдено книг по теме — 16

Похожие термины:

  • ТОТАЛЬНОСТЬ И БЕСКОНЕЧНОЕ. Эссе на тему экстериорности

    Totalite et Infini. Essai sur l&Exteriorite", 1961) - монография докторской диссертации Левинаса, изданная в Гааге. Выход в свет данной книги вызвал большой резонанс в кругах французских структуралистов. Структуралис
  • ЭТИКА И БЕСКОНЕЧНОЕ

    Ethique et Infini", 1982) — работа Левинаса, в которой излагается его собственная философская концепция в форме конструктивной беседы с Ф.Немо. В "Э.иБ." Левинас, как и во многих других своих работах, постулиру
  • Бесконечное, философская категория

    то, конец чего не может мыслиться, границы чего нельзя усмотреть. В этом смысле бесконечным является пространство и время, ибо любая граница (ср. Безграничный), которую мы для них устанавливаем (из ф
  • БЕСКОНЕЧНОЕ И КОНЕЧНОЕ

    филос. категории, обозначающие неразрывно связанные между собой противоположные свойства (стороны) объективного мира. Б. характеризует материю и движение в целом, их несотворимость и неуничтожим
  • БЕСКОНЕЧНОЕ ЛОГИЧЕСКОЕ

    понятие диалектической логики, введенное грузинским философом С.Б. Церетели (1907-1966). Б. Л., по определению Церетели, "есть то, отрицание чего утверждает его же. Точнее: это есть утверждение чего-либо о
  • АКСИОМА БЕСКОНЕЧНОСТИ

    см. Множеств теория.
  • АКТУАЛЬНАЯ БЕСКОНЕЧНОСТЬ

    см. Бесконечность.
  • БЕСКОНЕЧНОСТЬ

    Философский смысл термина: Бесконечность (Цицерон).
  • БЕСКОНЕЧНАЯ ИНДУКЦИЯ

    тот крайний вид индуктивного умозаключения, когда общее высказывание (суждение, положение) получается как заключение из бесконечной совокупности посылок, исчерпывающих все частные случаи. Приме
  • ИСЧИСЛЕНИЕ БЕСКОНЕЧНО МАЛЫХ ВЕЛИЧИН

    франц. calcul infinitesimal) - вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно мал
  • ИСЧИСЛЕНИЕ БЕСКОНЕЧНО МАЛЫХ

    (Infinitesimalrechnung; от фр. calcul infinitésimal) — вычисления с бесконечно малыми величинами, когда целое понимается как бесконечная сумма бесконечно малых частей. Своим строгим научным обоснованием исчисление
  • Бесконечномерное пространство

    пространство, содержащее бесчисленное множество линейно независимых элементов. Например, в квантовой механике - пространство Гильберта (гильбертово пространство), выражающее бесконечное число к
  • АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ

    одна из осн. абстракций математики и логики, позволяющая исследовать бесконечные совокупности (множества), применяя к ним логич. принципы (в частности, исключенного третьего закон, произвольного в
  • Паскаль: человек перед лицом истины и бесконечности. Его величие и ничтожество

    Но подлинная, абсолютная, "конечная" истина, постигающая все вещи, включая человека, доступна лишь самому абсолюту, Богу. Человек же как телесное существо осужден на понимание лишь относительной ис
  • О БЕСКОНЕЧНОСТИ, ВСЕЛЕННОЙ И МИРАХ

    1584) - одно из осн. соч. Бруно, излагающее естеств.-науч. основы его мировоззрения.
  • Отношение бесконечности

    пространство" (нечто находится в пространстве, нечто существует), "время" (нечто находится под воздействием времени),"движение" (нечто движется во времени и пространстве).
  • Бесконечности сосчитанной аргумент

    логический довод против приложения бесконечности дурной к реально существующему, т. к. составленность наличного целого из бесконечного числа частей приводит к противоречию сосчитанной, т. е. кон
  • БЕСКОНЕЧНОСТЬ БОГА

    - Бог не ограничен никакими пределами и воспринимается в мистическом опыте как Бездна любви, блага и совершенства, как Бездна, голос которой обращается к безграничной глубине человеческой души.
  • БЕСКОНЕЧНОСТЬ ДУРНАЯ

    метафизическое понимание бесконечности мира, предполагающее признание монотонного, без конца повторяющегося чередования одних и тех же конкретных свойств, процессов и законов движения в любых м
  • МАТЕМАТИЧЕСКАЯ БЕСКОНЕЧНОСТЬ

    общее название разл. реализаций идеи бесконечности в математике. Хотя между значениями понятия М. б. и др. значениями, в к-рых употребляется термин "бесконечность", нет жесткой границы (поскольку вс