логике и математике, невыводимость (недоказуемость) предложения нек-рой теории (или выражающей его формулы соответствующего исчисления) и его отрицания из данной совокупности предложений (конъюнкции формул), напр. из данной системы аксиом. Доказательство Н. сводится к доказательству непротиворечивости (совместимости) двух систем предложений (формул): данной системы и данного предложения (формулы) - с одной стороны, и данной системы и отрицания данного предложения (формулы) - с другой. Если непротиворечивая система аксиом дедуктивно полна (см. Полнота в логике), то присоединение к ней в качестве аксиомы любого невыводимого из нее предложения приводит к противоречию. Когда речь идет о содержательно формулируемых предложениях, то выводимость понимается интуитивно (в соответствии с законами логики); в исчислениях в качестве таких законов фиксируются определ. правила вывода, также подразделяемые на независимые (исходные) и производные.
Аналогично определенной выше дедуктивной Н. говорят о Н. функциональной (Н. выразит. средств): понятие (термин) независимо от данной совокупности понятий (терминов), если оно не может быть определено через них (при фиксированных правилах определения, относительно к-рых имеет смысл ставить вопрос о Н.). Совокупность предложений (формул) или понятий (терминов) наз. независимой (или неизбыточной, минимальной), если каждое из них независимо от остальных. Исторически первыми доказательствами Н. были доказательства Н. пятого постулата Евклида о параллельных, установившие относит. непротиворечивость неевклидовой геометрии Лобачевского - Бойаи. Ряд важных результатов о Н. получен для различных систем логики и аксиоматич. теории множеств.
0.00 байт