НАСЛЕДСТВЕННОСТЬ

Найдено 7 определений
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [советское] [постсоветское] [современное]

Наследственность
свойство организмов повторять в ряду поколений сходные признаки и свойства: типы обмена веществ, психологические особенности и типы индивидуального развития и т. д. Вместе с изменчивостью наследственность обеспечивает, согласно взглядам Дарвина, постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

Источник: Начала современного естествознания: тезаурус

Наследственность
свойство организмов повторять в ряду поколений сходные признаки и свойства — типы обмена веществ, психологические особенности, типы индивидуального развития (в определенных условиях внешней среды) и т. п. Наследственность — неотъемлемое свойство живой материи. Вместе с изменчивостью наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы. Наследственность осуществляется на основе передачи наследственных факторов, ответственных за формирование признаков и свойств организма, т. е. на базе наследования. (См. Эволюция, Наследование)

Источник: Концепции современного естествознания. Словарь основных терминов

Наследственность
свойство организмов повторять в ряду поколений сходные признаки и свойства; неотъемлемое свойство живой материи. Вместе с изменчивостью она обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы. Осуществляется на основе передачи наследственных факторов, ответственных за формирование признаков и свойств организма, т.е. на базе наследования - передаче генетической информации от одного поколения к другому. Наследуются определяющие признаки (химические носители наследственности - гены).
Термин "наследственность" также означает означает и то, что настоящее и будущее любой системы зависят от прошлого. Степень этой зависимости может быть любой.

Источник: Глоссарий философских терминов ИФ им. Киренского РАН

НАСЛЕДСТВЕННОСТЬ
передача живым существом его индивидуальных свойств своим потомкам. Подавляющее большинство фактов наследственности стали известны и объяснены благодаря законам Менделя, и на сегодняшний день уже установлено, что качества, приобретенные в ходе жизни индивида, передаются лишь в том случае, если влекут за собой мутации на хромосомном уровне. По большей части свойства передаются через два поколения (дед—внук): если мы возьмем серую мышь и белую мышь, то первое родившееся от них поколение даст серых мышей, но второе уже может дать как серых, так и белых мышей. Наследственность и воспитание образуют две составляющие личности: метод сопоставления близнецов часто используется для выявления того, какую роль играет наследственность, а какую — воспитание в широком смысле этого слова (все обстоятельства, сопровождающие развитие, рост и жизнь индивида: количество и качество пищи, семейная, школьная, социальная среда и т.д.).

Источник: Философский словарь

НАСЛЕДСТВЕННОСТЬ
передача прямым потомкам родительских свойств. Осуществляется благодаря непрерывности зародышевой плазмы: в то время как из одной части ее образуется тело нового индивида, др. часть продолжает свое существование в зародышевых клетках (яйцеклетках и сперматозоидах) этого индивида; в новом поколении этот процесс происходит вновь, в результате чего опять образуется новое тело, и, т. д. В теле "развиваются" "задатки" зародышевой плазмы и через нее передаются от поколения к поколению (см. Ген, Изменчивость). Совокупность этих задатков и представляет собой то, что наследуется. Ламаркизм (см. Ланарк) делает упор на влияние среды на наследственность при длительных одинаково направленных воздействиях (см. Неоламаркизм). Вопрос о том, наследуются ли приобретенные индивидом свойства, все еще является спорным. Учение о наследовании (наследственности) берет свое начало с опытов Грегора Менделя (18221884), осуществленных еще в 60-х годах прошлого столетия, но объясненных только около 1900 (Корренс, Чермак, де Фриз).

Источник: Философский энциклопедический словарь

Наследственность
способность живых организмов к передаче при-внаков и свойств от родителей к потомству. Эта способность возникла и развивалась в процессе биологической эволюции. У высших животных передача наследственных признаков зависит только от половых клеток. Изменения Н. организмов вызываются воздействием внешней среды. Такие изменения называют мутациями. Вредные мутации ведут к гибели организма, полезные закрепляются естественным отбором. Мутации и естественный отбор — осн. факторы биологической эволюции, результатом к-рой явились совр. виды организмов. Совр. биология открыла, что материальными носителями Н. в организме могут быть вещества, молекулы к-рых достаточно устойчивы, самовоспроизводятся и регулируют синтез белков. Этим комплексом свойств обладают молекулы ядерных нуклеиновых кислот. Выяснение материальных носителей Н. опровергает идеалистические представления о сверхъестественных причинах этой способности живых существ. Совр. генетика подошла к открытию конкретных путей целенаправленного изменения Н. Это открытие явится важным этапом в познании и преобразовании живой природы.

Источник: Философский словарь. 1963

НАСЛЕДСТВЕННОСТЬ
присущая всем живым организмам необходимость происходить только в строгой преемственности от себе подобных форм. Жизнь, раз затеплившись, в буквальном смысле вечно сохраняет себя на основе Н., передаваясь бесконечному и бесчисл. потомству. Однако потомство никогда точно не повторяет своих родителей, а в силу изменчивости, идущей бок о бок с Н., получает новые признаки. Hек-рые новые признаки, полученные потомством, становятся новыми приобретениями самой H. Следовательно, благодаря Н. сохраняется и необычное разнообразие жизненных форм, возникших и возникающих на основе наследств. изменчивости. Поступат. движение в развитии органич. мира может быть понято лишь на основе представлений о преемственности, о непрерывной протяженности все развивающейся и меняющей свои формы жизни. Жизнь угасает в бесчисл. множестве отд. особей, успевших, однако, оставить потомков при своем размножении. Эти потомки также погибнут, но снова успевши произвести еще б?льшее потомство. И так извечно и всегда вперед. Известно, что в химич. составе любого живого существа нет ни одного элемента, не встречающегося в неорганич. природе. Но сочетания этих элементов в структуре живых организмов столь высокомолекулярны и сложны, что возникать заново в природе теперь они уже не способны. Во всей своей сложности они могут себя лишь повторять, копируя готовые образцы со своих предшественников. Их же предшественники – это те жизненные формы, к-рые создавались природой в течение историч. хода всей эволюции и, совершенствуясь на основе изменчивости, смогли выдержать беспощадное действие естественного отбора. Каждый новый организм – это результат Н., проявляющейся в нем как способность воссоздавать в результате развития признаки своих предков. Отсюда и возникла гл. загадка науки о Н. – как идет передача признаков предков к их потомкам, свойств и особенностей родителей к их детям? Ответ на этот вопрос заключен в осн. свойстве самой жизни. Если существ. признаком всех живых существ является постоянный обмен веществ с внешней средой, то с этой т. зр. и Н. в существе своем представляет лишь особую форму ассимиляции. Благодаря этой ассимиляции любой организм способен сохранять, восстанавливать и, главное, воспроизводить свое основное высокоорганизованное белковое строение, для данного организма специфичное и уникальное. Подобное же наследств. воспроизведение имеет место и в развитии многоклеточного организма, когда в клеточных поколениях одной-единственной яйцеклетки миллионы и миллиарды раз копируется осн. наследств. структура клетки-родоначальницы. И эта осн. структура присутствует в любых живых клетках многоклеточного организма, несмотря на то, что клетки различных его тканей могут быть столь непохожи друг на друга. Это и позволило Дарвину дать такое четкое, хотя и недостаточное, определение: "Наследственность нужно рассматривать просто как форму роста, подобную делению низкоорганизованного одноклеточного организма" (Соч., т. 4, М.–Л., 1951, с. 758). Значение развития органич. материи в ее вечно поступательном движении может быть осознано только на основе понимания всей глубины процесса ассимиляции. Это не только способность организма (клетки) постоянно восстанавливать свою высокоорганизованную белковую структуру, для него строго специфичную, но и способность размножать эту структуру, передавая ее последующим клеточным поколениям и последующим поколениям особей – потомкам. Любое живое существо (клетка) строит само себя и размножается за счет материала, поступающего в него извне, т.е. за счет поступающей в него, им перерабатываемой и, наконец, им ассимилируемой, т.е. "себе уподобляемой", пищи. При этом надо иметь в виду, что ассимиляция ( + диссимиляция) – это обмен веществ, а не условий. У классиков марксизма-ленинизма находит предельно ясное толкование развитие любого процесса и, в частности, биологич. развитие, как направляемое не условиями, в к-рых он протекает, а движимое в основном борьбой собственных, внутренних, свойственных именно этому процессу, противоречий. Энгельс говорил: "...теория развития показывает, как, начиная с простой клетки, каждый шаг вперед до наисложнейшего растения, с одной стороны, и до человека – с другой, совершается через постоянную борьбу наследственности и приспособления" ("Диалектика природы", 1955, с. 166). От самых истоков научного познания явлений Н. предпринимались попытки обосновать представление о материальных носителях Н. Раньше в этом отношении большое значение приписывалось крови, так что даже до наших дней сохранились в рус. речи такие выражения, как "кровное родство", "кровосмешение", "полукровка" и др. Дарвин, создавая свою "временную теорию пангенезиса", в крови же помещал гипотетич. частицы Н. – "геммулы", в к-рых можно видеть предвидение будущих генов – дискретных носителей Н. как целого. Однако со времени открытия клетки (Шванн, 1839) как той единицы, из размножения и дифференцирования к-рой вырастают все одноклеточные и многоклеточные организмы, наследственную преемственность стали совершенно правильно связывать с преемственностью клеток, возникающих только от себе подобных клеток. И теперь едва ли кто сомневается, что "...как растения, так и животные, включая человека, – вырастают каждый из одной клетки по закону клеточного деления..." (там же, с. 156). Последние десятилетия 19 в. принесли важнейшие свидетельства значения клетки в явлениях Н. и развития. Громадный фактич. материал говорил об особой роли ядра. Так, рус. ботаник Чистяков (1874) описал "непрямое" деление клеточного ядра у растений и основные элементы ядра – хромосомы. Вскоре (1878) киевский гистолог Перемежко у нас и Флемминг за рубежом открыли митоз (особый тип деления неполовых клеток) и хромосомы также и у животных организмов. Благодаря этим фактам было получено важнейшее доказательство единства происхождения растений и животных и сформулировано затем эволюционное обобщение о законе постоянства числа и формы хромосом для каждого вида растений и животных. Целый ряд открытий был связан с установлением ведущей роли клеточного ядра в явлениях полового размножения. Так, еще в 1875 О. Гертвиг доказал, что сущность оплодотворения состоит в слиянии ядер женской и мужской половых клеток, что было подтверждено и на растениях (Горожанкин, 1880). Ван Бенеден (1883) открыл у животных особое, т.н. редукционное, деление при образовании половых клеток (т. н. мейоз). В результате этого деления число хромосом в половых клетках всегда вдвое меньше, нем в остальных, т.н. соматич., клетках тела. При оплодотворении, т.е. при слиянии женской и мужской половых клеток, соматич. двойное число хромосом опять восстанавливается. Мейоз был установлен и у растений (Беляев и Страсбургер). Укажем еще на открытие С. Г. Навашиным (1898) двойного оплодотворения у высших покрытосеменных растений и получение в эксперименте И. И. Герасимовым первых полиплоидных форм. Перечисленные факты легли в основу т.н. ядерной теории Н., предложенной еще в 1884 О. Гертвигом и Страсбургером. Но факты и обобщения, добытые наукой о клетке, оставались в поле зрения сравнительно небольшого числа биологов. Крупнейший сдвиг в науке о Н. наступил в начале 20 в. В 1900 трое ученых из разных стран "переоткрыли" законы Менделя и нашли работу самого Г. Менделя, напечатанную еще в 1866 и оставшуюся незамеченной современниками. Мендель провел точные опыты по скрещиванию различающихся растений гороха и по анализу их гибридного потомства. Прослеживая наследование отд. пар альтернативных признаков (красный или белый цветок, желтое или зеленое семя, высокий или низкий рост и т.д.), он установил правила единообразия гибридного потомства и доминирования в нем одного из признаков: правило расщепления (3:1) в потомстве гибридов по каждой паре признаков; правило независимого наследования признаков (отношение 9:3:3:1), принадлежащих к разным альтернативным парам. Заслуга Менделя в том, что он теоретически осмыслил и объяснил все полученные им факты с т. зр. дискретности в Н., т.е. зависимости проявления каждого признака от своей собств. пары наследств. факторов (в будущем названных генами), получаемых по одному со стороны материнского и отцовского родительских организмов. Представление о дискретном строении вещества наследственности было оформлено в теорию гена. Развитие учения о гене шло теми же путями и претерпевало те же превращения, как и учение об атоме. В начале 20 в. ген был постулирован как гипотетич. единица, изменяемая и познаваемая только в результате мутационного процесса. В дальнейшем гены все более ощутимо материализовались, а в 30-х гг. их места уже довольно точно определялись в гигантских хромосомах двукрылых насекомых. В наст. время, гл. обр. благодаря развитию генетики микроорганизмов, понятие о гене превратилось в реальность. Ген теперь представляется как сложная функциональная единица (цистрон), состоящая из отд. участков, способных давать мутационные изменения (мутоны) и участвовать в рекомбинациях генетич. материала (реконы). Еще в 10-х гг. 20 в. было составлено представление о генах как о единицах, независимо определяющих "мозаичное" развитие и строение организмов. На самом же деле гены, расположенные как отдельности по длине хромосом, действуют в целостном комплексе всех структурных элементов Н. Уже в 1902 поведение наследств. факторов в скрещиваниях было сопоставлено (Сеттон и, независимо, Бовери) с поведением особых и непременных элементов клеточного ядра – хромосом, чем было сделано первое обобщение, положившее основу т.н. хромосомной теории Н. Материальная основа простых менделевских расщеплений находится в материнских и отцовских хромосомах, к-рые сначала объединяются в гибридах, а затем, согласно правилам простой вероятности, распределяются и сочетаются в потомстве этих гибридов. Противоречивое развитие генетики повело к ограничению применимости правил Менделя, до этого подтвержденных на множестве растит. и животных (вплоть до самого человека) видов. Кроме параллелизма в поведении наследств. факторов и хромосом, объясняющего материальную основу менделевских закономерностей, замечателен такой же параллелизм поведения хромосом (в частности, т.н. половых) при наследовании пола и сцепленных с ним признаков. Зримо на тех же гигантских хромосомах полностью подтвердились представления о внутри и межхромосомных перестройках (нехватки, инверсии и транслокации), ранее постулированные генетиками лишь на основе особенностей наследования различных признаков. Поучительно поведение хромосом при конъюгации бактерий, передающих тем большее количество признаков, чем дольше идет конъюгация и чем длиннее участок хромосомы, переданный от одной особи к другой. Примеры подобного параллелизма можно множить бесконечно. Созданная совместным трудом генетиков и цитологов хромосомная теория Н. оказалась плодотворнейшим обобщением. Она по праву дала совр. учению о Н. имя "цитогенетики". Это крупнейшее теоретическое достижение занимает в биологии такое же место, как молекулярная теория в химии и теория атомных структур в физике. В продолжении работ по уточнению "местонахождения вещества наследственности" в последние годы принимают участие уже не только биологи, но и физики, и химики. Их объединенная работа, идущая уже на уровне совр. молекулярной биологии, подошла с начала 60-х гг. 20 в. к величайшим открытиям в биологии. Теперь предметом самого пристального внимания оказались не только белковые компоненты хромосом, но и непременные их спутники – нуклеиновые (ядерные) кислоты. Это сложные высокополимерные соединения, в состав к-рых входят азотистые (два пуриновых и два пиримидиновых) основания, сахар и остаток молекулы фосфорной кислоты. Несмотря на то, что нуклеиновые кислоты гораздо проще по своей структуре, чем белки, они, как и белки, представляют собой беспредельно варьирующие полимеры. Одна из них, а именно дезоксирибонуклеиновая кислота (ДНК), образующая вместе с белками самый состав хромосом, теперь заслуженно признается осн. структурой, ответственной за явления Н. и ассимиляции. ДНК программирует синтез специфических белков в клетке. Кроме того, весь код наследств. информации сосредоточен в ДНК, вместе с ней размножается и вместе с ней передается в хромосомах следующим поколениям клеток, а через половые клетки к следующим поколениям организмов – особей. Итак, Н. и биосинтез специфических для каждого организма белков, т.е. важнейшие проявления жизни, идут в клетке при непременном участии нуклеиновых кислот в этих синтетических, ассимиляционных процессах. Однако само явление размножения (репродукции) хромосом осуществляется, в частности, в цитоплазматическом синтезе предшественников ДНК. Их же укладывание в единую длинную полимерную цепь – генетич. основу строения хромосомы – не может происходить без действия специальных белковых ферментов (полимераза). Исследования последних лет показали, что нуклеиновые кислоты оказались действительно молекулярной основой организации всех форм жизни, и клеточных и неклеточных – от человека, животных, растений, любых микроорганизмов и до вирусов. Попарнорасположенные основания образуют двойную спиральную нить ДНК. В каждой из нитей четыре основания располагаются линейно и их последовательные тройки создают неисчерпаемые возможности комбинаций, составляя т.н. триплетный код. Оказалось, что эта линейность представляется единственным расположением, при к-ром возможно дальнейшее размножение нитей ДНК, их ауторедупликация. Полностью подтвердилось то, что было постулировано генетиками еще пятьдесят лет назад (а предсказано значительно раньше) и формулировалось как "линейное расположение генов в хромосоме". Установленное на множестве растительных и животных видов, относящихся к клеточным формам, это явление линейного расположения оказалось универсальным для всех, и в т.ч. для неклеточных, форм жизни. Добавим только, что все события, связанные с передачей Н., совершаются в клетке и ядерные элементы – хромосомы непосредственно соприкасаются и взаимодействуют с цитоплазмой. Известны и случаи т.н. "цитоплазматической" и "пластидной" Н., хотя число подобных примеров несопоставимо мало по сравнению с Н. "хромосомной". Блестящее развитие молекулярной генетики наших дней является подтверждением и прямым продолжением генерального направления ей предшествовавшей науки о Н., в основу к-рой была положена хромосомная теория Н. Полностью оказались подтвержденными представления Н. К. Кольцова (1928) о том, что хромосомы не делятся, а ассимилируют возле себя свое подобие, после чего новая и старая хромосомы расходятся. Верным оказалось и его учение о генных мутациях как об ошибках в ассимиляции "наследственной молекулы". Оправдались и слова Э. Вильсона, сказанные еще в 1896: "наследственность это передача последовательным поколениям сходных форм обмена веществ". Лит.: Морган Т. Г., Структурные основы Н., пер. [с англ. ], М.–П., [1924 ]; Кольцов Н. К., Организация клетки, М.–Л., 1936; Вильсон Э., Клетка и ее роль в развитии и Н., пер. с англ., т. 1–2, М.–Л., 1936–40; Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Робертис Е. де, Новинский В., Саэс Ф., Общая цитология, пер. с англ., М., 1962; Дубинин Н. П., Молекулярная генетика и действие излучений на Н., М., 1963; Эфроимсон В. П., Введение в медицинскую генетику, М., 1964; Жакоб Ф. и Вольман Э., Пол и генетика бактерий, пер. с англ., М., 1962; Лобашев M. E., Генетика, Л., 1963; Сэджер Р. и Райн Ф., Цитологич. и химич. основы Н., пер. с англ., М.. 1964. В. Сахаров. Москва.

Источник: Философская Энциклопедия. В 5-х т.

Найдено научных статей по теме — 2

Читать PDF
955.03 кб

Перспективы концептуализации понятия наследственности

Кочергин Алексей Альбертович
В статье рассматриваются перспективы дальнейшего развития концептуальных представлений о понятии наследственности в широком спектре биологических и социогуманитарных аспектов в рамках их синтеза.
Читать PDF
1.09 мб

Многовековой спор о роли наследственности и воспитания в развитии личности: история вопроса

Фандо Роман Алексеевич
В статье рассмотрена история полемики в отношении причин детерминации личностных качеств индивидов. Данные вопросы рассматривались еще в трудах выдающихся мыслителей античности и продолжают обсуждаться до сих пор.