МАТЕМАТИЧЕСКАЯ ЛОГИКА

Найдено 11 определений
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [советское] [постсоветское] [современное]

Логика математическая
раздел науки логики, развиваемый формально математическими методами. Играет важную роль в обосновании математики и приложениях (конструирование компьютеров, моделирование социальных, экономических, исторических и других систем).

Источник: Философия логика и методология науки Толковый словарь понятий. 2010 г.

МАТЕМАТИЧЕСКАЯ ЛОГИКА
раздел математики, изучающий доказательства. По П.С. Порецкому, «математическая логика есть логика по предмету, математика по методу». Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику.

Источник: Философский словарь инженера. 2016

ЛОГИКА МАТЕМАТИЧЕСКАЯ
логика в том ее виде, в котором она сложилась в основном в конце XIX — начале XX в. Характерная особенность математической (символической) логики состоит в представлении логического доказательства в качестве некоторого исчисления. Выдающийся вклад в развитие символической логики внесли Б. Рассел, К. Гёдель (см.), А. Тарский, Р. Карнап, X. Райхенбах (см.), А. Черч, А.А. Марков, П.Н. Новиков и др. Термин Л. м. двусмыслен. В одном случае имеется в виду символическая логика как таковая, в другом — применение логического анализа с целью прояснения оснований математики. По своему статусу Л. м., разумеется, не является математической дисциплиной, ибо она не оперирует математическими концептами.

Источник: Философия науки. Краткий энциклопедический словарь. 2008 г.

МАТЕМАТИЧЕСКАЯ ЛОГИКА
современная математическая модель формальной логики как науки о правильном рассуждении. По меткому выражению русского логика Порецкого, математическая логика суть логика по предмету и математика — по методу решения своих проблем. Систематическая разработка математической логики началась с работ Больцано, Фреге, Рассела и Витгенштейна. Суть этой логики и рассмотрении большинства логических категорий (понятие, предикат, суждение, умозаключение, вывод, доказательство) как логических функций, областью значения которых являются истинностные значения. Как логические функции истолковываются и все логические операторы (термины «Все», «Существует», «Некоторые», «Один», «Ниодин», «и», «или», «если, то», «тождественно», «возможно», «необходимо» и т. д. и т. п.). Все логические функции задаются, в конечном счете, табличным способом с помощью всевозможных сочетаний введенного числа истинностных значений на «входе» и «выходе» этих функций. Так, например, логическое отношение «если, то...» моделируется с помощью функции =), называемой материальной импликацией.

Источник: Философия науки: Словарь основных терминов

МАТЕМАТИЧЕСКАЯ ЛОГИКА

- одно из названий современной формальной логики, пришедшей во второй половине XIX - начале XX в. на смену традиционной логике. В качестве другого названия современного этапа в развитии науки логики используется также термин логика символическая. Определение "математическая" подчеркивает сходство новой логики с математикой, основывающееся прежде всего на применении особого символического языка, аксиоматического метода, формализации.
М. л. исследует предмет формальной логики методом построения специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленной и логической неясности естественного языка, которым пользовалась при описании правильного мышления традиционная логика. Новые методы дали логике такие преимущества, как большая точность формулировок, возможность изучения более сложных с точки зрения логической формы объектов. Многие проблемы, исследуемые в М. л., вообще невозможно было сформулировать с использованием только традиционных методов.
Иногда термин "М. л." употребляется в более широком смысле, охватывая исследование свойств дедуктивных теорий, именуемое металогикой или метаматематикой.

Источник: Словарь по логике

МАТЕМАТИЧЕСКАЯ ЛОГИКА (или символическая логика)
область знания, к-рая сложилась в результате применения в логике формальных методов математики и логического исследования математических рассуждений и доказательств. В М. л. логические процессы изучаются посредством их отображения в формализованных языках, или логических исчислениях. Наряду с изучением формального строения логических исчислений (Логический синтаксис) в М. л. встает также задача рассмотрения отношений между исчислениями и теми содержательными областями, к-рые служат их интерпретациями и моделями. Эта задача обрисовывает проблематику логической семантики. Логический синтаксис и семантика включаются в металогику — теорию средств описания, предпосылок и свойств логических исчислений. Нек-рые исходные понятия М. л. содержатся уже в учении мегаростоической школы (3 в. до н. э.). Саму же идею логического исчисления, по-видимому, впервые сформулировал Лейбниц. Однако как самостоятельная дисциплина М. л. оформилась в середине 19 в. благодаря работам Буля. С Буля начинается развитие т. наз. алгебры логики. Др. направление разработки М. л., ставшее определяющим, начинается с конца 19 в. в связи с потребностями математики в обосновании своих понятий и способов доказательств. У истоков этого направления лежат труды Фреге. Значительный вклад в его развитие внесли Рассел и Уайтхед (“Principia Mathematica”, 1910—13) и Гельберт. В этот период создаются фундаментальные логические системы М. л.— классические исчисление высказываний и исчисление предикатов. Крупные результаты, определившие совр. состояние М. л., были получены в. 30-х гг. Геделем. Тарским, А. Черчем. Совр. этап М. л. характеризуется исследованием разнообразных видов логических исчислений, интересом к проблемам семантики и вообще металогики, к вопросам специальных математических и технических приложений логики. В связи с задачами обоснования математики наряду с работами в области классической М. л. разрабатывается интуиционистская и конструктивная логика. С анализом оснований логики связаны исследования по комбинаторной логике. Ведутся исследования в области многозначных, модальных и релевантных логик. М. л. оказала влияние на развитие ряда разделов совр. математики, общей алгебры, теории алгоритмов, рекурсивных функций, формальных систем. М. л. находит приложение в электротехнике (исследование релейно-контактных и электронных схем), вычислительной технике (программирование), кибернетике (теория автоматов), нейрофизиологии (моделирование нейронных сетей), языкознании (структурная лингвистика и семиотика).

Источник: Философский энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА
современный этап развития формальной логики (иногда ее называют также символической логикой). Содержательное мышление отражается в рамках М. л. в особым образом построенных логических системах (исчислениях, формализованных языках). Создатели первых развернутых систем М. л. (Буль, Джевонс, Порецкий, Фреге и др.) использовали в качестве способов их построения методы математики, но постепенно в 20 в. были выработаны специфические средства построения логических систем (Металогика, Формализация). С современной точки зрения М. л. представляет собой совокупность искусственных формализованных языков, относительно к-рых установлены такие их логические свойства, как доказуемость, выводимость, следование и т. д. При этом в дедуктивной логике (Дедукция), охватывающей большую часть существующих логических систем, исследуются достоверные, всегда истинные отношения между элементами таких языков, в то время как в индуктивной (вероятностной) логике (Индукция) анализу подвергается совокупность вероятностных логических отношений. Классическая М. л. основывается па принципе двузначности: любое суждение (высказывание) либо истинно, либо ложно. Кроме классической в настоящее время в М. л. входит также множество неклассических логических систем: многозначная логика, в к-рой элементы соответствующих логических языков имеют три и более значений ИСТИННОСТИ, модальная логика, рассматривающая отношения между необходимостью, возможностью, случайностью и т. д. М. л. теснейшим образом связана с современной математикой (теорией множеств, абстрактной алгеброй, теорией вероятностей). Это привело к созданию некоторых научных ДИСЦИПЛИН, напр. теории алгоритмов (Алгоритм). Задачи обоснования математики вызвали необходимость построения конструктивной логики. В 50—60 гг. 20 в. большое внимание уделяется разработке логических систем, связанных с традиционными философскими проблемами (логика времени, логика действия, вопросов, существования и т. д.) При формализации и аксиоматизации (Аксиоматический метод) тех или иных разделов научного знания (напр., эвклидовой геометрии) требуется предварительное точное фиксирование логических систем, используемых в этом построении в качестве допустимых правил вывода, определения и т. д. Обычно в качестве таких систем используются определенные разделы классической М. л., но в последнее время — нередко и неклассической логики (напр., многозначная логика — в квантовой механике). Многие разделы М. л. применяются в исследовании релейно-контактных и электронных схем, в кибернетике, в системотехнике, в нейрофизиологии, лингвистике и т. д. Чрезвычайно широкое применение М. л. находит в разработке проблем логики науки и методологии науки, давая этим дисциплинам аппарат анализа. Истоки М. л. лежат в работах стоиков (философская школа, возникшая в Греции в 4 в. до н. э.), однако лишь после исследований Лейбница и особенно Буля она получила признание и стала широко разрабатываться. Крупный вклад в нее внесли Витгенштейн, Рассел, Гильберт, Гёдель, Черч, Новиков, Колмогоров, Марков, Мальцев, Тарский, Карнап, Айдукевич, Куайн, Кемени и др.

Источник: Краткий словарь по философии. 1970

МАТЕМАТИЧЕСКАЯ ЛОГИКА
один из ведущих разделов современной логики и математики. Сформировался в 19-20 ст. как реализация идеи о возможности записать все исходные допущения на языке знаков, аналогичных математическим и тем самым заменить рассуждения вычислениями. Предыстория М.Л. связана с именами Аристотеля, Р. Луллия, Дж. Буля (1815-1864), создавшего ее аппарат; Фреге, развившего логико-математические языки; Дж. Пеано (1858-1932), попытавшегося изложить разделы математики на языке логики. В основании всех исканий лежало стремление создать специальное счетное устройство (прообраз компьютерных систем) и соответствующий техническим вычислениям язык передачи информации. Второй важной проблемой М.Л. является выбор исходных понятий и их обоснование. В конце 19 ст. казалось, что исходным может быть понятие множества; эта точка зрения была детерминирована эффектом от самого факта появления теории множеств как новой области математики (Б. Больцано, Г. Кантор). Рефлексия над феноменом множеств привела к обнаружению парадоксов в теории множеств. (Одним из тех, кто пытался "спасти" математику от этой проблемы был Д. Гильберт). С 20-х 20 в. начинается современный этап развития М.Л. Он связан с применением точных методов при изучении формальных аксиоматических задач. Суть их состоит в описании рассматриваемой теории на базе строгого логико-математического языка (формализация), с последующими процедурами логического анализа теории, а именно с точки зрения непротиворечивости (например, таких теорий, как элементарная геометрия, арифметика, анализ достаточно надежных оснований) и полноты (теорема Геделя о неполноте утверждает, что всякая достаточно богатая теория необходимо содержит утверждения, которые нельзя ни доказать, ни опровергнуть, не опровергнув самой теории). Критике подверглись некоторые положения, используемые в математике без должного обоснования (закон исключенного третьего, аксиомы выбора и др.). Построение математики с учетом этих ограничений стало программой интуиционизма (один из авторов Я. Брадэр), конструктивизма (А.А. Марков). Основным объектом современной М.Л. являются исчисления. В качестве их компонентов выступают: 1) язык (формальный); 2) аксиомы; 3) правила вывода. На их основе стало возможным дать точное определение доказательства, получить точные утверждения о невозможности доказательства тех или иных предложений теории. Значительным достижением является и математическое определение понятия алгоритма (эффективной процедуры для решения задач из бесконечного класса задач). Еще Лейбниц мечтал о нахождении алгоритма для решения всех математических проблем. Разработка теории алгоритма связана с именами К. Геделя, Ж. Эрбрана, С. Кли-ни, А. Тьюринга, А. Черча, А.А. Маркова, А.Н. Колмогорова, П.С. Новикова и др. М.Л. имеет несколько разделов, связанных с изучением понятия доказательства (теория доказательств), моделей (теория моделей - Тарский, А.И. Мальцев). В ней очевидны синтаксический и семантический аспекты изучения формальных языков. Перспективы развития М.Л. предполагают высокую динамику как количественного, так и качественного роста кибернетических устройств. Другим стимулом являются достижения в разработке проблем обоснования математики (современный аксиоматический метод).
А.И.Лойко

Источник: Новейший философский словарь

Математическая логика
 (или символическая логика) сложилась в результате применения к области логики формальных методов математики, базирующихся на использовании специального языка символов и формул. В М. л. содержательное логическое мышление (процессы рассуждения и доказательства) изучается посредством его отображения в формальных логических системах, или исчислениях. Т. обр., М. л. является по своему предмету логикой, а по методу — математикой. М. л. содержит далеко идущие обобщения и развитие идей и методов традиционной формальной логики и является совр. этапом в развитии формальной логики. Совр. М. л. включает в себя целый ряд логических исчислений и является учением о таких исчислениях, их предпосылках, свойствах и применениях. Наряду с изучением формального строения логических исчислений (Логический синтаксис) в М. л. встает также задача рассмотрения отношений между исчислениями и теми содержательными областями, к-рые служат их интерпретациями и моделями. Эта задача обрисовывает проблематику логической семантики. Логический синтаксис и семантика включаются в металогику — теорию средств описания предпосылок и свойств логических исчислений. Открытие формального рассмотрения логики принадлежит Аристотелю (4 в. до н. э.) (Силлогистика). В первоначальной форме некоторые исходные понятия М. л. содержатся уже в учении мегаро-стоической школы (3 в. до н. э.). Саму же идею логического исчисления, по-видимому, впервые сформулировал Г. В. Лейбниц. Однако как самостоятельная дисциплина М. л. оформилась в середине 19 в. благодаря работам Дж. Буля. С Буля начинается развитие т. наз. алгебры логики. Э. Шредер в «Лекциях по алгебре логики» (1890—95) подытожил и систематизировал результаты этого развития. Др. направление разработки М. л. начинается с конца 19 в. в связи с потребностями математики в обосновании своих понятий и способов доказательств. У истоков этого направления лежат труды Г. Фреге. Крупный вклад в его развитие внесли Б. Рассел и А. Уайтхед («Principia Mathematica», 1910— 1913) и Д. Гильберт. В этот период создаются фундаментальные логические системы — классические исчисление высказываний и исчисление предикатов. Совр. этап М. л. характеризуется исследованием разнообразных видов логических исчислений, интересом к проблемам семантики и вообще металогики, к вопросам специального научного и технического приложения логики. В связи с задачами обоснования математики наряду с работами в области классической логики разрабатывается конструктивная логика. С анализом оснований логики связаны исследования по комбинаторной логике. Создается теория многозначных логик. Попытки решить проблему формализации логического следования приводят к созданию исчислений строгой и сильной импликации. Закладываются основы модальной логики. Вместе с тем М. л. оказывает большое влияние и на саму совр. математику. Из М. л. выросли такие существенные разделы последней, как, напр., теории алгоритмов и рекурсивных функций. М. л. находит приложение в электротехнике (исследование релейно-контактных и электронных схем), вычислительной технике (программирование), кибернетике (теория автоматов), нейрофизиологии (моделирование нейронных сетей), языкознании (в структурной лингвистике и семиотике). Такого тесного сплетения логической проблематики с решением специальных научных задач и использования логики в качестве аппарата при конкретном научном исследовании старая формальная логика не знала.

Источник: Философский словарь. 1963

математическая логика
ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика — область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин «Л. с.» был, по-видимому, впервые применен Дж. Венном в 1880.         Уже Аристотель широко применял буквенные обозначения для переменных в своих логических работах. Идея построения универсального языка для всей математики и формализации на базе такого языка математических доказательств, и вообще, любых рассуждений, выдвигалась в 17 в. Г. Лейбницем. Однако только к середине 19 в. стало очевидным, что существующая логическая парадигма, а именно аристотелевская силлогистика, уже не отвечает требованиям развития современной науки.         С работ Дж. Буля 1847 и 1854 начался новый этап развития логики под названием «алгебра логики». С др. стороны, возникновение и развитие Л. с. связано с работами Г. Фреге, который впервые в 1879 представил свод логических законов в виде исчисления. Кроме того, для логики предикатов Фреге дает строгое определение понятия «доказательства», которое является общепринятым и по сей день.         Основы современной логической символики были разработаны итал. математиком Дж. Пеано, чьи интересы, как и интересы Фреге, концентрировались вокруг оснований математики и развития формально-логического языка. Логическая запись Пеано была принята, хотя и частично модифицирована, А.Н. Уайтхедом и Б. Расселом в их знаменитой трехтомной «Principia Mathematica» (1910—1913), а затем одобрена и Д. Гильбертом.         Создание логического языка и с его помощью таких объектов, как логические исчисления, строго формализующие различные теории в виде некоторого конечного списка аксиом и правил вывода, означало, что в науке 19 в. возникла потребность в Л. с. В первую очередь, развитие Л. с. было вызвано потребностями математики, ставившей проблемы, для решения которых средства традиционной логики были непригодны. Одной из таких проблем была недоказуемость 5-го постулата Евклида в геометрии. Только с развитием Л. с. появился аппарат, позволяющий решать проблему логической независимости аксиом данной теории. Суть проблемы состоит в установлении того, что некоторая аксиома теории не доказуема из остальных.         Основным стимулом развития Л. с. в начале 20 в. была проблема оснований математики, особенно после того, как в теории множеств были обнаружены различные парадоксы. Ответом на парадоксы стало возникновение четырех направлений в основаниях математики: логицизма, интуиционизма, формализма (программа Гильберта) и теретико-множественного платонизма в виде аксиоматической теории множеств ZF. В каждом из этих случаев потребовалось развитие и применение технического аппарата Л. с. В первую очередь, это относится к программе Гильберта (начиная с 1904 ), где была поставлена главная задача: найти строгое основание для математики посредством доказательства ее непротиворечивости. Для этого потребовалось развить теорию доказательств (см. Доказательств теория).         Однако вывод К. Геделя о неполноте арифметики — сделанный в 1931 и утверждающий, что если теория S, содержащая арифметику, непротиворечива, то доказательство непротиворечивости теории не может быть проведено средствами самой теории S — убедительно показал, что программа Гильберта невыполнима. Обширным полем деятельности для современной Л. с. является теория рекурсии, которая, в первую очередь, имеет дело с проблемой разрешимости: доказуема или нет формула А из некоторого множества посылок. Эти исследования привели к теориям вычислимости, к созданию компьютерных программ автоматического поиска доказательств. Решение проблемы разрешимости (см. Разрешения проблема) явилось основным стимулом для создания теории алгорифмов. Только после уточнения понятия алгорифма выяснилось, что в хорошо известных разделах математики существуют алгоритмически неразрешимые проблемы (А.А. Марков, Э. Пост, П.С. Новиков).         И, наконец, важное место в современной Л. с. занимает теория моделей (см. Моделей теория), которая изучает модели формальных теорий, соотношения между моделями и теориями и преобразования моделей.         Развитие современной логики показывает, что терм и н «Л. с.» гораздо шире термина «Математическая логик а», г д е изучаются только те типы рассуждений, которыми пользуются математики. Символизация и представление различных логических теорий в виде исчислений стало обычным делом, и поэтому строго разделить современные логические исследования на относящиеся к Л. с. и не относящиеся к ней порой просто невозможно.         Л. с. является рефлексивной наукой. Это означает, что она применяет свои методы и логические средства для анализа и понимания своей собственной структуры. В первую очередь, это результаты Геделя о неполноте. Оказалось, что неполнота арифметики принципиальна, т.е. подобные теории нельзя пополнить, чтобы доказать их непротиворечивость. Итог этой рефлексии имеет далеко идущие последствия, ибо встает вопрос о самом статусе математики: не основывается ли она на глубоко скрытых противоречиях? Кроме того, в настоящее время идет оживленная дискуссия, вызванная результатом Геделя. Многие ученые, в том числе и с мировым именем (Пенроуз Р. Тени разума. В поисках науки о сознании. М.— Ижевск, 2003), пришли к выводу, что деятельность человеческого разума является невычислимым процессом, и поэтому моделирование его на компьютерном устройстве в принципе невозможно.         Рефлексия чистой логики над собой достигла к концу 20 в. критической точки и поставила вопрос о статусе уже самой логики, о том, что такое логика. Дело в том, что, в отличие от математики, рефлексия чистой логики континуально размножилась. Сейчас мы имеем континуумы различных классов логик. О единстве Л. с. не может быть и речи — столь удивительными и неожиданными свойствами и моделями обладают некоторые представители неклассических логик. Встает вопрос об иерархии, о взаимоотношениях и классификации всех эти логик. В 1936 создана Международная Ассоциация Символической Логики. В том же году начал издаваться самый известный журнал по логике: «The Journal of Symbolic Logic».         А. С. Карпенко         Лит.: Гильберт Д., Аккерман В. О сновы теоретической логики. М., 1947; Гильберт Д., Бернайс П. Основания математики. Логические исчисления и формализация арифметики. М., 1979; Гильберт Д., Бернайс П. Основания математики: Теория доказательств. М., 1 9 8 2; Ершов ЮЛ., Палютин Е.А. Математическая логика М., 1979; КарриХ.Б. Основания математической логики. М., 1969; Клини С.К. Введение в метаматематику. М., 1957; Клини С.К. Математическая логика. М., 1973; Колмогоров А.Н., Драгалин А.Г. Математическая логика. М., 2004; Марков А.А. Элементы математической логики. М., 1984; Мендельсон Э. Введение в математическую логику. М., 1984 (3-е изд.); Новиков П.С. Элементы математической логики. М., 1973; Справочная книга по математической логике. Т. 1 — 4. М., 1982—1983; Copi I.M. Symbolic Logic. Prentice Hall, 1979 (5th ed.); From Frege to Godel: A Source Book in Mathematical Logic, 1879 — 1931. Cambridge, 1967; Klerk V. Understanding Symbolic Logic. Prentice Hall, 1994; П-Bibliography of Mathematical Logic. Vols. I—VI. В., 1987.

Источник: Энциклопедия эпистемологии и философии науки

МАТЕМАТИЧЕСКАЯ ЛОГИКА
логика, развившаяся в точную науку, применяющую математич. методы, или, согласно П. С. Порецкому, логика по предмету, математика по методам. Идея построения М. л. высказывалась впервые Лейбницем. Но лишь в 19 в. в соч. Буля "Математический анализ логики" (G."Boole, "The mathematical analysis of logic", 1847) была начата систематич. разработка этой науки. Дальнейшее развитие М. л. в значит. мере стимулировалось потребностями математики, ставившей логич. проблемы, для решения к-рых старые средства классич. формальной логики были непригодны. Одной из этих проблем явилась проблема недоказуемости 5-го постулата Эвклида в геометрии. Эта проблема связана с аксиоматическим методом, являющимся наиболее распространенным способом логич. систематизации математики. Он требует точной формулировки основных, принимаемых без доказательства положений развертываемой теории – т.н. а к с и о м, из к-рых все дальнейшее ее содержание логически выводится. Математич. теории, развиваемые т.о., наз. а к с и о м а т и ч е с к и м и. Классич. прототипом такого построения математич. теории является эвклидово построение геометрии. В связи со всякой аксиоматич. теорией естественно возникает ряд логич. проблем. В частности, возникает проблема л о г и ч е с к о й н е з а в и с и м о с т и аксиом данной теории, состоящая в установлении того, что ни одна из аксиом теории не может быть чисто логически выведена из остальных аксиом. Для эвклидовой геометрии в течение двух тысячелетий оставался открытым вопрос о логич. независимости 5-го постулата Эвклида. Было предпринято много тщетных попыток вывести его из остальных аксиом эвклидовой геометрии, пока, наконец, в работах Н. И. Лобачевского не было впервые в явной форме высказано убеждение в невозможности осуществить такой вывод. Это убеждение было подкреплено Лобачевским построением новой геометрии, в корне отличной от эвклидовой. В геометрии Лобачевского, тщательно разработанной ее творцом, не обнаруживалось противоречий; это вселяло уверенность в том, что противоречия и вообще не могут возникнуть, как бы далеко ни было продвинуто выведение следствий из аксиом новой геометрии. Впоследствии нем. математиком Ф. Клейном было доказано, что п р о т и в о р е ч и я не могут возникнуть в геометрии Лобачевского, если они не могут возникнуть в эвклидовой г е о м е т р и и (см. Метод аксиоматический). Так возникли и были частично решены исторически первые проблемы "недоказуемости" и непротиворечивости в аксиоматич. теориях. Точная постановка таких проблем, их рассмотрение как проблем математических требуют уточнения понятия доказательства. Всякое математич. доказательство состоит в последовательном применении тех или иных логич. средств к исходным положениям. Но логич. средства не представляют собой чего-то абсолютного, раз навсегда установленного. Они вырабатывались многовековой человеческой практикой; "...практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, д а б ы эти фигуры м о г л и получить значение а к с и о м" (Ленин В. И., Соч., т. 38, с. 181–82). Человеческая практика является, однако, на каждом историч. этапе ограниченной, а объем ее все время растет. Логич. средства, удовлетворительно отражавшие человеческое мышление на данном этапе или в данной области, могут уже оказаться неподходящими на след. этапе или в др. области. Тогда в зависимости от изменения содержания рассматриваемого предмета изменяется и способ его рассмотрения – изменяются логич. средства. Это в особенности относится к математике с ее далеко идущими многостепенными абстракциями. Здесь бессмысленно говорить о логич. средствах как о чем-то данном в своей совокупности, как о чем-то абсолютном. Зато имеет смысл рассмотрение логич. средств, применяемых в той же или иной конкретной обстановке, встречающейся в математике. Их установление для к.-л. аксиоматич. теории и составляет искомое уточнение понятия доказательства для этой теории. Важность этого уточнения для развития математики выявилась в особенности за последнее время. Разрабатывая множеств теорию, ученые столкнулись с рядом трудных проблем, в частности с проблемой о мощности континуума, выдвинутой Г. Кантором (1883), к к-рой до 1939 не было найдено удовлетворит. подходов. Др. проблемы, столь же упорно не поддававшиеся решению, встретились в дескриптивной теории множеств, разрабатываемой сов. математиками. Постепенно выяснилось, что трудность этих проблем является логической, что она связана с неполной выявленностью применяемых логич. средств и аксиом и что единств. путем к ее преодолению является уточнение тех и других. Выяснилось, т.о., что разрешение этих задач требует привлечения М. л., к-рая, следовательно, является наукой, необходимой для развития математики. В наст. время надежды, возлагавшиеся на М. л. в связи с этими проблемами, уже оправдали себя. В отношении проблемы континуума очень существенный результат был получен К. Геделем (1939), доказавшим непротиворечивость обобщенной континуум-гипотезы Кантора с аксиомами теории множеств при условии, что эти последние непротиворечивы. В отношении же ряда трудных проблем дескриптивной теории множеств важные результаты получены П. С. Новиковым (1951). Уточнение понятий доказательства в аксиоматич. теории является важным этапом ее развития. Теории, прошедшие этот этап, т.е. аксиоматич. теории с установленными логич. средствами, называют д е д у к т и в н ы м и т е о р и я м и. Лишь для них допускают точную формулировку интересующие математиков проблемы доказуемости и непротиворечивости в аксиоматич. теориях. Для решения этих проблем в совр. М. л. применяется метод формализации доказательств. Идея метода формализации доказательств принадлежит нем. математику Д. Гильберту. Проведение этой идеи стало возможным благодаря предшествовавшей разработке М. л. Булем, Порецким, Шредером, Фреге, Пеано и др. В наст. время метод формализации доказательств является мощным орудием исследования в проблемах обоснования математики. Применение метода формализации бывает обычно связано с выделением логич. части рассматриваемой дедуктивной теории. Эта логич. часть, оформляемая, как и вся теория, в виде нек-рого исчисления, т.е. системы формализованных аксиом и формальных правил вывода, может быть рассматриваема как самостоятельное целое. Простейшим из логич. исчислений являются исчисления высказываний, классическое и конструктивное. Формальное различие двух исчислений высказываний отражает глубокое различие в их истолкованиях, касающееся смысла пропозициональных переменных и логич. связок (см. Интуиционизм, Исчисление задач, Логика высказываний). Наиболее широко используемым при построении дедуктивных математич. теорий является в наст. время классич. предикатов исчисление, представляющее собой развитие и уточнение классич. теории суждений Аристотеля и вместе с тем соответствующее теоретико-множеств. системе абстракций. Конструктивное исчисление предикатов относится к классич. исчислению предикатов так же, как конструктивное исчисление высказываний к классич. исчислению высказываний. Самое существенное из расхождений между этими двумя исчислениями предикатов связано с истолкованием в них частных, или экзистенциальных, суждений. В то время как в конструктивном исчислении предикатов такие суждения истолковываются как утверждения о возможности определ. конструкций и считаются установленными лишь при указании этих конструкций, в классич. исчислении предикатов экзистенциальные суждения обычно трактуются в отрыве от конструктивных возможностей как некие "чистые" утверждения о существовании (см. Конструктивное направление). Более удовлетворительное истолкование экзистен-циальных суждений классич. исчисления предикатов, увязывающее определ. образом это исчисление с конструктивным исчислением предикатов, было открыто А. Н. Колмогоровым в 1925. В математике логич. исчисления применяются в сочетании со специфич. аксиомами развертываемых дедуктивных теорий. Напр., теорию натуральных чисел можно строить, объединяя аксиомы Пеано для арифметики с исчислением предикатов (классическим или конструктивным). Применяемое при этом объединение логич. символики с математической не только позволяет оформлять математич. теории в виде исчислений, но и может являться ключом к уточнению смысла математич. предложений. В наст. время сов. математиком Н. А. Шаниным разработаны точные правила конструктивного истолкования математич. суждений, охватывающие широкие области математики. Применение этих правил становится возможным лишь после того, как рассматриваемое суждение записано на надлежащем точном логико-математич. языке. В результате применения правил истолкования может выявиться конструктивная задача, связываемая с данным суждением. Это, однако, происходит не всегда: не со всяким математич. предложением обязательно связывается конструктивная задача. С исчислениями связаны следующие понятия и идеи. Об исчислении говорят, что оно непротиворечиво, если в нем не выводима никакая формула вида U вместе с формулой U (где есть знак отрицания). Задача установления непротиворечивости применяемых в математике исчислений является одной из гл. задач М. л. В наст. время эта задача решена лишь в весьма огранич. объеме. Употребляются разл. понятия п о л н о т ы исчисления. Имея в виду охват той или иной содержательно определенной области математики, считают исчисление полным относительно этой области, если в нем выводима всякая формула, выражающая верное утверждение из этой области. Другое понятие полноты исчисления связано с требованием доставлять либо доказательство, либо опровержение для всякого предложения, формулируемого в исчислении. Первостепенное значение в связи с этими понятиями имеет теорема Геделя–Россера, утверждающая несовместимость требования полноты с требованиями непротиворечивости для весьма широкого класса исчислений. Согласно теореме Геделя–Россера, никакое непротиворечивое исчисление из этого класса не может быть полным относительно арифметики: для всякого такого исчисления может быть построено верное арифметич. утверждение, формализуемое, но не выводимое в этом исчислении (см. Метатеория). Эта теорема, не снижая значения М. л. как мощного организующего средства в науке, в корне убивает надежды на эту дисциплину как на нечто способное осуществить всеобщий охват математики в рамках одной дедуктивной теории. Надежды такого рода высказывались мн. учеными, в том числе Гильбертом – главным представителем формализма в математике – направления, пытавшегося свести всю математику к манипуляциям с формулами по определенным раз навсегда установленным правилам. Результат Геделя и Россера нанес этому направлению сокрушительный удар. В силу их теоремы, даже такая сравнительно элементарная часть математики, как арифметика натуральных чисел, не может быть охвачена одной дедуктивной теорией. М. л. органически связана с кибернетикой, в частности с теорией релейно-контактных схем и автоматов, машинной математикой и лингвистикой математической. Приложения М. л. к релейно-контактным схемам основаны на том, что всякая двухполюсная релейно- контактная схема в след. смысле м о д е л и р у е т нек-рую формулу U классич. исчисления высказываний. Если схема управляется n реле, то столько же различных пропозициональных переменных содержит U, и, если обозначить через bi, суждение "Реле номер i сработало", то цепь будет тогда и только тогда замкнута, когда будет верен результат подстановки суждений b1, ..., bn вместо соответствующих логич. переменных в U. Построение такой моделируемой формулы, описывающей "условия работы" схемы, оказывается особенно простым для т.н. ?-с х е м, получаемых исходя из элементарных одноконтактных цепей путем параллельных и последовательных соединений. Это связано с тем, что параллельное и последовательное соединения цепей моделируют, соответственно, дизъюнкцию и конъюнкцию суждений. Действительно, цепь, полученная путем параллельного (последовательного) соединения цепей Ц1 и Ц2, тогда и только тогда замкнута, когда замкнута цепь Ц1 или (и) замкнута цепь Ц2. Применение исчисления высказываний к релейно-контактным схемам открыло плодотворный подход к важным проблемам совр. техники. Вместе с тем эта связь теории с практикой привела к постановке и частичному решению мн. новых и трудных проблем М. л., к числу к-рых в первую очередь относится т.н. проблема м и н и м и з а ц и и, состоящая в разыскании эффективных методов нахождения простейшей формулы, равносильной данной формуле. Релейно-контактные схемы являются частным случаем управляющих схем, применяемых в совр. автоматах. Управляющие схемы иных типов, в частности, схемы из электронных ламп или полупроводниковых элементов, имеющие еще большее практич. значение, также могут быть разрабатываемы с помощью М. л., к-рая доставляет адекватные средства как для анализа, так и для синтеза таких схем. Язык М. л. оказался также применимым в теории программирования, создаваемой в наст. время в связи с развитием машинной математики. Наконец, созданный в М. л. аппарат исчислений оказался применимым в математической лингвистике, изучающей язык математич. методами. Одной из осн. проблем этой науки является точная формулировка правил грамматики рассматриваемого языка, т.е. точное определение того, что следует понимать под "грамматически правильной фразой этого языка". Как показал амер. ученый Хомский, есть все основания искать решение этой задачи в следующем виде: строится нек-рое исчисление, и грамматически правильными фразами объявляются выражения, составленные из знаков алфавита данного языка и выводимые в этом исчислении. Работы в этом направлении продолжаются. См. также Алгебра логики, Конструктивная логика, Логика комбинаторная, Логика классов, Логическое исчисление, Модальная логика и лит. при этих статьях. А. Марков. Москва.

Источник: Философская Энциклопедия. В 5-х т.

Найдено научных статей по теме — 6

Читать PDF
81.71 кб

Влияние теории релейно-контактных схем на развитие математической логики

Кузичева Зинаида Андреевна
Статья посвящена исследованию взаимного влияния процесса математизации логики и идей построения технических устройств, позволяющих решать задачи логики, а затем и применения логических средств решения задач упрощения технических у
Читать PDF
965.89 кб

Синтез философии экологической безопасности и логики математического расчёта

Аствацатуров Артём Ервандович
Глобальный характер проблем экологической безопасности диктует необходимость поиска новых нетрадиционных путей развития науки, которые могли бы защитить цивилизацию от всемирной катастрофы.
Читать PDF
652.44 кб

Применение векторного формализма в логике и логико-математическом моделировании

Аршинский Л.В.
В статье выполнен обзор ряда направлений, посвящённых применению векторного формализма в логических исследованиях. Выделяются три таких направления.
Читать PDF
844.46 кб

Исследование иррациональных систем путем расширения логико- математического аппарата

Кортунов Вадим Вадимович
Каждый преподаватель, которому довелось читать гуманитарные дисциплины студентам и слушателям негуманитарного направления подготовки, наверняка сталкивался со сложностями понимания и усвоения материала.
Читать PDF
218.68 кб

П. С. Порецкий. Жизнь и научная деятельность пионера исследований в области математической логики в

Бажанов В. А.
Due to the search in the Kazan archives new materials relating to the life and work of outstanding Russian logician P.S. Poretsky (1846 1907) were found.
Читать PDF
452.93 кб

Рефлексивные, иррефлексивные и нерефлексивные бинарные отношения в математической логике и в математ

Лобовиков В.О.

Похожие термины: