ЛОГИЧЕСКИЕ ОПЕРАЦИИ

Найдено 3 определения
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [советское] [постсоветское] [современное]

Логические операции
операции, выполняемые в соответствии с правилами булевой алгебры. К ним относят операции: отрицания, логическое «и», логическое «или» и тождество (эквивалентность). На этих логических операциях основана работа вычислительных машин.

Источник: Начала современного естествознания: тезаурус

ЛОГИЧЕСКИЕ ОПЕРАЦИИ
операции, посредством которых из простых высказываний образуются сложные, из простых терминов - сложные, из высказываний - термины, из терминов - высказывания и т. д.
К Л. о., позволяющим из одних высказываний получать другие высказывания, относятся конъюнкция ("и", символически &), дизъюнкция ("или", v), импликация ("если, то", ->), эквивалентность ("если и только если", =), отрицание ("неверно, что", ~) и др. Так, если даны два произвольных высказывания A и В, из них с помощью конъюнкции получается сложное высказывание A & В, которое истинно, только когда A и B истинны; с помощью дизъюнкции получается сложное высказывание A v В, истинное, когда хотя бы одно из входящих в него высказываний истинно, и т. п. (см.: Логика высказываний).

Источник: Словарь по логике

ЛОГИЧЕСКИЕ ОПЕРАЦИИ
логич. операторы, логич. связки, функции, преобразующие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сентенциональные) связки, с помощью к-рых образуются выражения логики высказываний, и кванторы, введение к-рых позволяет расширить логику высказываний до логики предикатов. Л. о. позволяют строить сложные высказывания из нек-рых элементарных, подобно тому как союзы, союзные слова и обороты служат для построения сложных предложений из простых в естеств. языках. Напр., в классич. двузначной логике, в к-рой высказывания могут быть только либо истинными, либо ложными, Л. о. конъюнкции интерпретируется как союз «и» и его многочисл. синонимы и оттенки («а», «да», «но», «хотя», «между тем как», «а также», «кроме того» и т. д.); дизъюнкции- как один из смыслов («неразделительный») союза «или»; отрицание - как частица «не» и ее языковые эквиваленты; импликации- примерно как обороты «если ..., то ...» и «из... следует...» или глагол «влечет»; эквиваленции - как оборот «тогда и только тогда, когда» и его синонимы и т. п. Соответствие это не взаимнооднозначно и приблизительно; поэтому точные определения Л. о. задаются не «переводами» их на естеств. языки, а либо посредством т. н. истинностных таблиц (или таблиц истинности), указывающих, какое из двух истинностных значений - «и» («истина») или «л» («ложь») - принимает результат применения данной Л. о. к нек-рым исходным высказываниям при каждом конкретном распределении истинностных значений этих исходных высказываний, либо заданиемнадлежащих постулатов (логич. аксиом и правил вывода).
Изоморфная (см. Изоморфизм и гомоморфизм) интерпретируемость классич. логики высказываний в терминах логики классов обусловливает существование теоретико-множеств. операций, аналогичных каждой из ее Л. о. в том смысле, что они подчиняются одним и тем же взаимным соотношениям и образуют булевы алгебры (соответственно алгебру высказываний и алгебру множеств; см. Алгебра логики).

Источник: Советский философский словарь