ГЕДЕЛЬ КУРТ

Найдено 9 определений
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [советское] [постсоветское] [современное]

ГЁДЕЛЬ Курт
28. 4. 1906, Брюнн (Брно) - 14.1.1978, Принстон], австр. логик и математик. С 1940 в США. Осн. труды в области математич. логики а тео
рии множеств. Важнейший результат, полученный Г. - доказательство неполноты достаточно богатых формальных систем (в т. ч. арифметики натуральных чисел и аксиоматич. теории множеств). Г. показал, что в таких системах имеются истинные предложения, к-рые в их рамках недоказуемы и неопровержимы. В филос.-методологич. плане теорема Г. о неполноте означала утверждение принципиальной невозможности полной формализации науч. знания. Г. принадлежит ряд результатов в теории моделей, в области конструктивной логики и др. разделах математич. логики. В 30-х гг. филос. взгляды Г. были близки к неопозитивизму, впоследствии выступал с критикой субъективизма в филос. истолковании логики.

Источник: Советский философский словарь

Гёдель Курт
 (р. 1906) — австр. математик и логик, внесший значительный вклад в разработку проблем математической логики. В 30-х гг. работал в Венском ун-те, а с 1940 — в США. Важнейший результат, полученный Г., состоит в доказательстве (1931) неполноты формальных систем (напр., допускающих формализацию арифметики натуральных чисел): в таких системах всегда имеются предложения, к-рые в их рамках недоказуемы и не опровергаемы. Этот результат Г. вызвал интенсивное исследование ограниченностей формальных систем (работы А. Чёрча, С. Клип и, А. Тарского, А. Мостовского, П. Новикова и др.), приведшее к формулированию принципиального философского вывода о невозможности полной формализации научного знания. Г. работал также в области метаматематики, конструктивной логики, теории рекурсивных функций и т. д. В своих философских воззрениях Г. испытал в 30-х гг. влияние неопозитивизма, а впоследствии выступал с критикой субъективизма.

Источник: Философский словарь. 1963

ГЕДЕЛЬ Курт (1906—78)
австр. математик и логик. Разрабатывал проблемы метаматематики и математической логики. Важнейший результат, полученный Г., состоит в доказательстве (1931) неполноты достаточно богатых формальных систем (в т. ч. аксиоматической теории множеств и арифметики натуральных чисел): в таких системах имеются истинные предложения, к-рые в их рамках недоказуемы и неопровергаемы. Этот результат Г. вызвал интенсивное исследование ограниченностей формальных систем (работы А. Черча, С. Клини, Тарского, А. Мостовского, П. Новикова и др.), а в философском плане означал утверждение принципиальной невозможности полной формализации научного знания. Г. принадлежат также важные результаты в теории моделей (теорема о полноте узкого исчисления предикатов), в области конструктивной логики, теории рекурсивных функций и т. д. В своих философских воззрениях Г. испытал в 30-х гг. влияние неопозитивизма, а впоследствии выступал с критикой субъективизма.

Источник: Философский энциклопедический словарь

ГЁДЕЛЬ КУРТ
(1906-1978) - выдающийся австрийский логик и математик, доказавший теорему о неполноте формальной системы, использующей натуральные числа и руководствующейся финитными методами. В такой системе, например в формальной арифметике, всегда найдется формально неразрешимое предложение, т.е. такая замкнутая формула А, что ни она, ни ее отрицание не являются теоремами этой системы. В качестве указанной формулы можно взять положение о непротиворечивости формальной арифметики. Исследования Г. показали неосуществимость разработанной Д. Гильбертом программы финитной формализации математики. Часто утверждается, что Г. доказал невозможность полной формализации человеческого знания. В действительности же он показал, что такого рода формализация невозможна в рамках формальных систем, реализующих финитные методы. Вполне возможно, что полная формализация знания достижима в рамках всей совокупности логических и математических теорий. В философском отношении Г. принадлежал к теоретико-множественному направлению.

Источник: Философия науки. Краткий энциклопедический словарь. 2008 г.

ГЕДЕЛЬ Курт

(1906—78) — австр.-амер. математик, логик. Приват-доцент Венского ун-та (1933—39), один из участников Венского кружка; после эмиграции в США (1940) работал в Принстонском ин-те высших исследований, проф. (с 1953 г.). Специализировался в обл. матем. логики, теории мн-в, теории моделей. Среди разл. разработок Г. по этим проблемам (в т.ч. теорема о полноте узкого исчисления предикатов, доказательство непротиворечивости ряда гипотез теории мн-в и др.) особое значение имеют теорема о неполноте формальных систем (1931) и теорема о непротиворечивости формальных систем (1940). В науч.-филос. лит-ре их часто называют «теоремы Г.», хотя ему принадлежит доказательство более 10 разл. логико-матем. теорем. Согл. 1-й теореме, если формальная логич. система непротиворечива, то она неполна. Согл. 2-й теореме, если формальная система непротиворечива, то ее непротиворечивость недоказуема средствами, формализуемыми в этой системе. Важнейшими следствиями этих теорем явл. вывод о невозможности завершенной формализации теор. положений науки и вывод о сопряженности любой логич. системы (в т.ч. и науч. теории) с др. логич. системами. Напр., всякая формальная система включает т.н. наиболее сильный элемент (постулат), к-рый м.б. непротиворечиво обоснован лишь с использованием элементов др. системы; в пределах же данной системы он обладает статусом непроверяемой аксиомы. Теоремы Г. оказали существ. влияние на развитие философии науки в целом; совр. концепции структуры и роста науч. знания строятся с учетом значения этих теорем и вытекающих из них следствий. Е.В.Гутов

Источник: История и философия науки. Энциклопедический словарь

ГЁДЕЛЬ (Godel) Курт
1906-1978) - австр. логик и математик. Участвовал в работе Венского кружка. В 1933-39 - приват-доцент Венского ун-та, в 1940 эмигрировал в США, с 1953 - проф. Института высших исследований в Принстоне. Г. принадлежит ряд важнейших результатов в области математической логики, теории множеств, теории моделей: теорема о полноте узкого исчисления предикатов, метод арифметизации метаматематики, доказательство непротиворечивости ряда важных гипотез теории множеств и др. Наиболее широко известны теоремы Г. о неполноте и непротиворечивости формальных систем. Согласно первой из них, если арифметическая формальная система непротиворечива, то она неполна.
Вторая теорема гласит, что если формальная система непротиворечива, то невозможно доказать ее непротиворечивость средствами, формализуемыми в этой системе. На этих теоремах базируются многие важные результаты в рамках математической логики, теории доказательств, а также выводы методологического и гносеологического характера. По выражению С.К. Клини, они несут в себе целую программу и философию математики. Теоремы зачастую рассматриваются как достаточно строгое обоснование принципиальной невозможности полной формализации научных рассуждений и научного знания в целом.
Совместимость аксиомы выбора и обобщенной континуум-гипотезы с аксиомами теории множеств // Успехи математических наук. 1948. Вып. 3. № 1; Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systems I, Monatshefte fur Mathematik und Physik, 38, 1931; The consistency of the axiom of shoice and of the generalized continuum-hipothesis with the axioms of set theory. Princeton, 1940; см. также библиографию в: Клини С.К. Введение в математику. М., 1957.

Источник: Современная западная философия: словарь

ГЕДЕЛЬ КУРТ

(р. 28 апр. 1906) – австр. логик и математик. Родился в г. Брно, в Австро-Венгрии (ныне Чехословакия). В 1933–38 – приват-доцент Венского ун-та. В 1940 эмигрировал в США (с 1953 – проф. Ин-та высших исследований в Принстоне). Известен своими трудами в области математич. логики, в к-рую внес существ. вклад. Ему принадлежат: теорема о полноте узкого исчисления предикатов (1930); метод арифметизации метаматематики (1931); теорема о неполноте формальных систем (т.н. первая теорема Г., или теорема о неполноте, 1931); теорема о невозможности доказать непротиворечивость формальной системы средствами самой системы (т.н. вторая теорема Г., 1931); важные результаты об интерпретации конструктивной логики (1931–33); первое определение общей рекурсивной функции (1934); установление непротиворечивости ряда важнейших гипотез теории множеств (1938). Среди результатов Г. особое значение имеет теорема о неполноте, опубликованная в 1931 в его статье "О формально неразрешимых предложениях Principia Mathematica и родственных систем". В этой статье Г. показал, что в формальной системе, изложенной в соч. Уайтхэда и Рассела "Principia Mathematica", и в других достаточно содержательных формальных системах (критерием содержательности является способность выразить арифметику натуральных чисел) имеются неразрешимые (т.е. недоказуемые и одновременно неопровержимые в данной системе) предложения. Теорема Г. о неполноте имеет важное логич. и гносеологич. значение, поскольку показывает невозможность полной формализации человеческого мышления. Из теоремы о неполноте по существу вытекает и существование неразрешимых массовых проблем, а именно: неразрешимой является семантич. проблема разрешения любой достаточно содержательной формальной системы (однако это обстоятельство не могло быть обнаружено своевременно ввиду отсутствия четкого понятия алгоритма, и первый пример неразрешимой массовой проблемы был опубликован лишь в 1936 независимо от результатов Г.; то, что существование неразрешимых массовых проблем вытекает из теоремы о неполноте, было осознано еще позднее). В начальный период своей деятельности Г. был членом Венского кружка неопозитивистов. Впоследствии выступил с критикой субъективизма Рассела и др. в философских вопросах логики с позиций "реализма" и признания объективного характера логико-математических абстракций. В "реализме" Г. встречаются черты объективного идеализма в духе Платона. Лит.: Nagel E., Newman J., G?del´s proof, "Scient. Amer.", 1956, t. 194, No 6, p. 71–84, 86; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957 (имеется библиогр.).

Источник: Философская Энциклопедия. В 5-х т.

ГЁДЕЛЬ Курт
27 апреля 1906, Брно, АвстроВенгрия —14 января 1978, Принстон, США) — австрийский и американский логик и математик; окончил Венский университет; участвовал в работе Венского кружка, но довольно быстро отошел от него, не удовлетворенный уровнем обсуждений. Обращает на себя внимание относительно малое число опубликованных Геделем работ и принципиальный характер задач, решаемых практически в каждой из них. Его диссертация (1930) была посвящена фундаментальному результату—доказательству теоремы полноты: «Формула истинна во всех моделях теории Th тогда и только тогда, когда она является теоремой Th», утвердившему формализованную классическую логику в качестве прочной основы для математики. Теореме полноты эквивалентна теорема существования модели: «Теория Th имеет модель тогда и только тогда, когда она непротиворечива».
За этими «оптимистичными» теоремами последовала та, которая при поверхностном понимании кажется весьма разочаровывающей. Это теорема Геделя о неполноте: «Если непротиворечивая теория содержит арифметику, то в ней имеется формула, которую нельзя ни доказать, ни опровергнуть». Такая формула называется неразрешимой в данной теории. Доказательство теоремы о неполноте весьма устойчиво к смене формализмов и логических систем. В дальнейшем Россер и Подниекс ослабили условия данной теоремы и усилили ее следствия. (Обзор общематематически и философски важных вариаций теоремы неполноты дан в кн.: Гончаров С. С; Ершов Ю. Л., Самохвалов К. Ф. Введение в логику и методологию науки. М., 1994.)
Как заметил Гедель, доказательство теоремы неполноты не формализуется внутри самой арифметики, а это означает, что мы не можем доказать непротиворечивость теории Th внутри самой Th, поскольку тогда мы доказали бы неразрешимую формулу (3-я теорема Геделя). Доказательство 3-й теоремы не столь устойчиво, оно зависит от свойств кодирования формул числами, и был построен ряд кодирований, при которых можно внутри самой теории доказать формулу, содержательно означающую ее непротиворечивость. (Подробный анализ данных вопросов и связи их с программой Гильберта см. ст. Формализм.)
Гедель построил вложение классической логики в интуиционистскую (независимо от Гливенко), а интуиционистской — в модальную систему S4. Он доказал совместимость аксиомы выбора с множеств теорией и дал конструкцию, обобщающую разветвленную иерархию Рассела. В модели Геделя оказалась верна и континуум-гипотеза Кантора, так что он попутно доказал и ее совместимость. Эта модель была использована Коэном при доказательстве независимости аксиомы выбора.
В 1940, после аншлюса, ученый переехал в США, в Принстонский Институт высших исследований, и в 1948 принял гражданство США, В результате научных контактов с А, Эйнштейном, который придерживался мнения, что из общей теории относительности должна следовать направленность времени, Гедель построил контрпример: модель Вселенной, в которой есть замкнутые мировые линии (т. е. в некоторых ее областях время ходит по кругу). За эту работу, которая в современной космологии положила начало целому направлению, он получил (по рекомендации самого Эйнштейна) Эйнштейновскую премию (1954).
В 1958 Гедель построил принципиально новую интерпретацию типа реализуемости для интуиционистской арифметики, основанную на нахождении контрпримера и сохраняющую классическую истинность для всех отрицательных формул. В бумагах Геделя после его смерти было найдено логическое доказательство существования Бога, но показательно, что сам Гедель не публиковал его и старался о нем не говорить.
Соч.: Collected works, ed. S. Feferman et al., v. I-III. N. Y., 19861995; Совместимость аксиомы выбора и обобщенной континуумгипотезы с аксиомами теории множеств.— «Успехи математических, наук», 1948, т. 3, вып. 1; Об одном еще не использованном расширении финитной точки зрения.— В кн.: Математическая теория логического вывода. М., 1967.
Лит.: Нагель Э., Ньюмен Д. Теорема Геделя. М., 1970; Подкиекс К. М. Вокруг теоремы Геделя. Рига, 1981; Брутян Г. А. Письмо К. Геделя.-«ВФ», 1984, № 12.
H. H. Непейвода

Источник: Новая философская энциклопедия

ГЁДЕЛЬ Курт (1906 - 1978)
математик и логик, член Национальной Академии наук США и Американского философского общества, автор фундаментального открытия ограниченности аксиоматического метода и основополагающих работ в таких направлениях математической логики, как теория моделей, теория доказательств и теория множеств. В 1924 Г. поступил в Университет Вены. Доктор математики (1930). Приват-доцент Университета Вены, член Венского кружка (1933-1938). Эмигрировал в США (в 1940, с 1953 - профессор Принстонского института перспективных исследований). Основные труды: "Полнота аксиом логического функционального исчисления" (докторская диссертация, 1930), "О формально неразрешимых предложениях Principia mathematica и родственных систем" (1931), "О интуиционистском исчислении высказываний" (1932), "О интуиционистской арифметике и теории чисел" (1933), "Одна интерпретация интуиционистского исчисления высказываний" (1933), "Совместимость аксиомы выбора и обобщенной континуум-гипотезы с аксиомами теории множеств" (1940), "Об одном еще не использованном расширении финитной точки зрения" (1958). В конце 1920-х Гильбертом и его последователями были получены доказательства полноты некоторых аксиоматических систем. Полнота аксиоматической системы рассматривалась ими как свойство системы аксиом данной аксиоматической теории, характеризующее широту охвата этой теорией определенного направления математики. В математических теориях, конструируемых на основаниях материальной аксиоматики, значения исходных терминов аксиоматической теории даны с самого начала (т.е. определенную интерпретацию данной теории полагают фиксированной). В рамках такой теории стали возможны рассуждения о выводимости ее утверждений из аксиом и рассуждения об истинности таких утверждений. Полнота системы аксиом в данном случае соответствовала совпадению этих понятий. (Пример аксиоматики такого вида - аксиоматика геометрии Евклида.) В математических теориях, конструируемых на основаниях формальной аксиоматики, значения исходных терминов аксиоматической теории остаются неопределенными во время вывода теорем из аксиом. В данном случае система аксиом называлась полной относительно данной интерпретации, если из нее были выводимы все утверждения, истинные в этой интерпретации. Наряду с таким понятием полноты определялось и другое ее понятие, являвшееся внутренним свойством аксиоматической системы (не зависимым ни от одной из ее интерпретаций): систему аксиом называли дедуктивно полной, если всякое утверждение, формулируемое в данной теории, может быть либо доказанной (являясь в таком случае теоремой), либо опровергнутой (в смысле возможности доказательства его отрицания). При этом, если аксиоматическая теория полна относительно некоторой интерпретации, то она является дедуктивно полной; и наоборот, если теория дедуктивно полна и непротиворечива (т.е. все теоремы истинны) относительно данной интерпретации, то она является полной относительно этой интерпретации. Понятие дедуктивной (внутренней) полноты - "удобная характеристика" аксиоматической теории при конструировании ее в виде формальной системы. На таком основании Гильбертом была выстроена искусственная система, включающая часть арифметики, с доказательствами ее полноты и непротиворечивости. Подход Г. в целом относится к конструктивному направлению математики: в интуиционистской трактовке истинности высказывания истинной он считал только рекурсивно реализуемую формулу (сводимую к функции от чисел натурального ряда). Тем самым интуиционистская арифметика становилась расширением классической. Одновременно конструируя и логику, и арифметику, Г. вынужденно отказался от логицистского тезиса Фреге о полной редуцируемости математики к логике. Г. обосновывал математику разработанным им же методом арифметизации метаматематики, заключающимся в замене рассуждений о выражениях любого логико-математического языка рассуждениями о натуральных числах. Этот метод Г. поместил в основу доказательства "теоремы Г. о полноте" исчисления предикатов классической логики предикатов (первого порядка), а позднее - в две важнейшие теоремы о неполноте расширенного исчисления предикатов, известных под общим названием "теорема Г. о неполноте". Г. в своей докторской диссертации (1930) доказал теорему о полноте исчисления классической логики предикатов: если предикатная формула истинна в любой интерпретации, то она выводима в исчислении предикатов (другими словами, любая формула, отрицание которой невыводимо, является выполнимой). Являясь одной из базисных теорем математической логики, теорема Г. о полноте показывает, что уже классическое исчисление предикатов содержит все логические законы, выражаемые предикатными формулами. Усиление теоремы о полноте классического исчисления логики предикатов утверждает, что всякая счетная последовательность формул, из которой нельзя вывести противоречия, выполнима. При этом, если из множества предикатных формул P невозможно вывести противоречие в рамках предикатного исчисления, то для множества P существует модель, т.е. интерпретация, в которой истинны все формулы множества Р. Доказательство полноты исчисления классической логики предикатов породило в школе Гильберта некоторые надежды на возможность доказательства полноты и непротиворечивости всей математики. Однако уже в следующем, 1931, году была доказана теорема Г. о неполноте. Первая теорема о неполноте утверждает, что если формальная система арифметики непротиворечива, то в ней существует как минимум одно формально неразрешимое предложение, т.е. такая формула F, что ни она сама, ни ее отрицание не являются теоремами этой системы. Иными словами, непротиворечивость рекурсивной арифметики делает возможным построение дедуктивно неразрешимого предложения, формализуемого в исчислении, т.е. к существованию и недоказуемой, и неопровержимой формулы. Такая формула, являясь предложением рекурсивной арифметики, истинна, но невыводима, несмотря на то, что по определению она должна быть такой. Следовательно, непротиворечивость формализованной системы ведет к ее неполноте. Усилением первой теоремы о неполноте является вторая теорема о неполноте, утверждающая, что в качестве формулы F возможен выбор формулы, естественным образом выражающей непротиворечивость формальной арифметики, т.е. для непротиворечивого формального исчисления, имеющего рекурсивную арифметику в качестве модели, формула F выражения этой непротиворечивости невыводима в рамках данного исчисления. Согласно теореме Г. о неполноте, например, любая процедура доказательства истинных утверждений элементарной теории чисел (аддитивные и мультипликативные операции над целыми числами) заведомо неполна. Для любых систем доказательств существуют истинные утверждения, которые даже в таком достаточно ограниченном направлении математики останутся недоказуемыми. Б.В.Бирюков пишет о методологическом значении теоремы Г. о неполноте: "...если формальная арифметика непротиворечива, то непротиворечивость нельзя доказать средствами, формализуемыми в ней самой, т.е. теми финитными средствами, которыми Гильберт хотел ограничить метаматематические исследования...". Следовательно, (внутреннюю) непротиворечивость любой логико-математической теории невозможно доказать без обращения к другой теории (с более сильными допущениями, а следовательно менее устойчивой). Фон Нейман читал в момент публикации работы Г. лекции по метаматематической программе Гильберта, однако сразу после прочтения этой работы он перестроил курс, посвятив Г. все оставшееся время. Теорема Г. о неполноте - важнейшая метатеорема математической логики - показала неосуществимость программы Гильберта в части полной формализации определяющей части математики и обоснования полученной формальной системы путем доказательства ее непротиворечивости (финитными методами). Однако теорема Г. о неполноте, демонстрируя границы применимости финитного подхода в математике, не может свидетельствовать об ограниченности логического знания. Э.Нагель и Дж.Ньюмен о значении открытий Г. для сравнительной оценки возможностей человека и компьютера пишут, что "...для каждой нашей конкретной задачи, в принципе, можно построить машину, которой бы эта задача была под силу; но нельзя создать машину, пригодную для решения любой задачи. Правда, и возможности человеческого мозга могут оказаться ограниченными, так что и человек тогда сможет решить не любую задачу. Но даже если так, структурные и функциональные свойства человеческого мозга пока еще намного больше по сравнению с возможностями самых изощренных из мыслимых пока машин... Единственный непреложный вывод, который мы можем сделать из теоремы Г. о неполноте, состоит в том, что природа и возможности человеческого разума неизмеримо тоньше и богаче любой из известных пока машин...". Г. также внес значительный вклад в аксиоматическую теорию множеств, два базисных принципа которой - аксиома выбора Э.Цермело и континуум-гипотеза - долгое время не поддавались доказательству, однако вследствие значимости их логических следствий исследования в этих направлениях продолжались. В аксиоме выбора Э.Цермело постулируется существование множества, состоящего из элементов, выбранных "по одному" от каждого из непересекающихся непустых множеств,
объединение которых составляет некое множество. (Из аксиомы выбора Э.Цермело выводимы следствия, противоречащие "интуиции здравого смысла". Например, возникает возможность разбиения трехмерного шара на конечное количество подмножеств, из которых возможно движениями в трехмерном пространстве реконструировать два точно таких же шара.) Континуум-гипотеза - это утверждение о том, что мощность континуума (мощность, которую имеет, например, множество всех действительных чисел) есть первая мощность, превосходящая мощность множества всех натуральных чисел. Обобщенная континуум-гипотеза гласит, что для любого множества М первая мощность, превосходящая мощность этого множества, есть мощность множества всех подмножеств множества Р. Эта проблема (высказанная Кантором в 1880-х) была включена в знаменитый список 23 проблем Гильберта. В 1936 Г. доказал, что обобщенная континуум-гипотеза совместима с одной естественной системой аксиоматической теории множеств и, следовательно, не может быть опровергнута стандартными методами. В 1938 Г. доказал непротиворечивость аксиомы выбора и континуум-гипотезы (интеграция их в заданную систему аксиом теории множеств не вела к противоречию). Для решения этих проблем была редуцирована аксиоматическая система П.Бернайса, на основе которой, а также предположения о конструктивности каждого множества Г. выстроил модель, адекватную системе аксиом без аксиомы выбора, и такую, что в ней все множества обладали свойством полной упорядочиваемости. В этой модели аксиома выбора оказалась истинной (выполнимой) и, следовательно, совместимой с исходной системой аксиом, следовательно непротиворечивой. В этой модели оказалась истинной и континуум-гипотеза. Дальнейшие работы в этом направлении позволили Г. разработать конструкции для исследования "внутренних механизмов" аксиоматической теории множеств. Кроме работ в указанных направлениях, Г. предложил в 1949 новый тип решения одного важного класса уравнений общей теории относительности, который был расценен Эйнштейном как "...важный вклад в общую теорию относительности..." и был удостоен Эйнштейновской премии (1951).

Источник: История Философии: Энциклопедия