ФОРМАЛИЗОВАННЫЙ ЯЗЫК

Найдено 5 определений
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [советское] [современное]

ФОРМАЛИЗОВАННЫЙ ЯЗЫК
искусственная знаковая система, предназначенная для построения и объяснения некоторой теории. Формализованный язык отличается как от естественных (речевых) языков человеческого общения, так и от искусственных языков (типа эсперанто. Исторически первым формализованным языком была «Логика» Аристотеля, объясняющая необходимые правила построения умозаключений, правила обоснования выводов из предпосылок.

Источник: Культура и межкультурное взаимодействие 2018

Формализованный язык
 исчисление, к-рому приписана интерпретация (Интерпретация и модель). Синтаксическая часть Ф. я. (Логический синтаксис) или само исчисление образуется чисто формально (Логистический метод). Исчисление становится Ф. я. при добавлении семантических правил, приписывающих значения (Значение и смысл) правильно построенным выражениям исчисления. Ф. я. может помимо чисто логических аксиом содержать также некоторые утверждения нелогического характера (напр., некоторые законы биологии, аксиомы арифметики и др.); тогда Ф. я. дедуктивно описывает соответствующую содержательную область. Ф. я. благодаря своим дедуктивным средствам дает возможность проводить строгое рассуждение и получать новые дедуктивно выводимые следствия, непосредственно не содержащиеся в принятых аксиомах. Т. обр., Ф. я. является аппаратом вывода и доказательства в формализуемых научных дисциплинах. Роль Ф. я. велика в связи с попытками осуществления автоматизации научного рассуждения посредством электронных машин (Кибернетика).

Источник: Философский словарь. 1963

формализованный язык
ФОРМАЛИЗОВАННЫЙ ЯЗЫК — искусственный язык логики, предназначенный для воспроизведения логических форм контекстов естественного языка, а также выражения логических законов и способов правильных рассуждений в логических теориях, строящихся в данном языке.         Построение Ф. я. начинается с задания его алфавита — совокупности исходных, примитивных символов. В алфавит включаются логические символы (знаки логических операций и отношений, напр. пропозициональные связки и кванторы), нелогические символы (параметры дескриптивных составляющих естественного языка) и технические символы (напр., скобки). Затем формулируются так называемые правила образования сложных знаков языка из простых — задаются различные типы правильно построенных выражений. Наиболее важным их видом являются формулы — аналоги высказываний естественного языка.         Отличительной особенностью Ф. я. является эффективность определений всех его синтаксических категорий: вопрос о принадлежности произвольного символа или последовательности символов алфавита к тому или иному классу языковых выражений решается алгоритмически в конечное число шагов.         Иногда в состав Ф. я. наряду с алфавитом и правилами образования включают так называемые правила преобразования — процедуры дедукции, точные правила переходов от одних последовательностей символов к др. В этом случае Ф. я., по существу, отождествляется с логическим исчислением. Др. трактовка Ф. я. предполагает принятие правил интерпретации его выражений, позволяющих каждой синтаксической категории знаков сопоставить семантическую, что существенно для выявления логических форм.         Ф. я. могут обладать различными выразительными возможностями. Так, пропозициональные языки позволяют исследовать логическую форму лишь на уровне сложных высказываний, без учета внутренней структуры простых высказываний. Языки силлогистики позволяют фиксировать логические формы атрибутивных высказываний. Первопорядковые языки воспроизводят структуру как простых (и атрибутивных, и реляционных), так и сложных высказываний, но в них разрешается квантификация только по индивидам. В более богатых языках — языках высших порядков — допускается квантификация также по свойствам, отношениям и функциям.         Принципы построения Ф. я. могут быть использованы Ф.и при задании языков нелогических, прикладных теорий.         В этом случае в алфавит языка вместо абстрактных нелогических символов (параметров) вводятся имена конкретных объектов предметной области теории, знаки определенных функций, свойств, отношений и т.п.         В.И. Маркин

Источник: Энциклопедия эпистемологии и философии науки

ФОРМАЛИЗОВАННЫЙ ЯЗЫК
1) В широком смысле – любая совокупность нек-рым образом специализированных языковых средств с (более или менее) точно фиксиров. правилами образования "выражений" (с и н т а к с и с Ф. я.) и приписывания этим выражениям определ. смысла (с е м а н т и к а). В таком употреблении термин "Ф. я." не предполагает, вообще говоря, никаких спец. ограничений ни на синтаксич. структуру, ни на семантич. правила, ни на назначение такого языка. В частности, Ф. я. может как включать дедуктивные элементы (т.е. служить способом выражения умозаключений, предназначаемых для доказательства или вывода нек-рых утверждений), так и не включать таковых (т.е. быть именно и только "языком" как таковым). При таком широком словоупотреблении между "формализованными" и "неформализованными" языками нет четкой границы, они представляют собой не столько два "разных языка", сколько различные способы описания одной и той же "языковой субстанции". Напр., выражения "Н2О", "вода", "eau", "water", "Wasser", "vesi" и т.д. можно, в принципе, в равной мере считать элементами "Ф. я. химии", и обычный выбор в качестве стандартного именно первого из них определяется не какой-то его особой "формальностью", а тем удобным обстоятельством, что лишь оно (как, впрочем, и более громоздкие выражения вида "вещество, молекула к-рого состоит из двух молекул водорода и одной молекулы кислорода") имеет четкую структуру, "подсказывающую" способ его образования из нек-рых "элементарных" языковых символов (знаков химич. элементов, скобок, точек и цифр), что играет решающую роль при построении простой и обозримой семантики этого языка. Такого же рода соображения определяют, по существу, и выбор стандартных "Ф. я. математики" и т.п. Структурная организованность таких "математизированных" Ф. я. чрезвычайно важна для задач (математической) логики, где термин "Ф. я." употребляется в следующем, более узком смысле. 2) Под Ф. я. в логике понимают интерпретированное исчисление, т.е. нек-рую формальную систему вместе с ее интерпретацией. Именно ввиду наличия интерпретации как неотъемлемого элемента Ф. я. для обозначения этого понятия часто употребляют (синонимичный) термин "семантич. система" (в отличие от "синтаксич. систем" – неинтерпретированных исчислений). Использование Ф. я.– характерная особенность матем. логики, к-рую часто и определяют как "предмет формальной логики, изучаемый посредством построения формализованных языков". Следует, впрочем, заметить, что такого рода "определения" отнюдь не являются неотъемлемым атрибутом изложений математич. логики: понятие Ф. я. не только не входит (как правило) в предметные логико-математич. языки, но не является, строго говоря, и элементом никакого конкретного метаязыка, будучи, скорее, удобным рабочим термином для предварительных эвристич. пояснений предмета этой науки. Напр., в таких классич. изложениях математич. логики, как "Введение в метаматематику" С. К. Клини (пер. с англ., М., 1957) или "Grundlagen der Mathematik" Д. Гильберта и П. Бернайса (В., 1934–39), этим понятием (по крайней мере в явном виде) вообще не пользуются (хотя и следуют, конечно, воплощенным в нем идеям и представлениям). Лит.: Черч ?., Введение в математическую логику, пер. с англ., т. 1, М., 1960, введение (§ 00–09); Tarski ?., Der Wahrheitsbegriff in den formalisierten Sprachen, "Studia Philos.", 1935, Bd 1, S. 261–405; Carnap R.. Introduction to semantics and formalization of logic, L., 1959. Ю. Гастев. Москва.

Источник: Философская Энциклопедия. В 5-х т.

ФОРМАЛИЗОВАННЫЙ ЯЗЫК
искусственная знаковая система, предназначенная для представления некоторой теории. Формализованный язык отличается от естественных (национальных) языков человеческого общения и мышления, от искусственных языков типа Эсперанто, от «технических» языков науки, сочетающих средства определенной части естественного языка с соответствующей научной символикой (язык химии, язык обычной математики и др.), от алгоритмического языка типа обобщенного программирования и т. п. прежде всего тем, что его задача — служить средством фиксации (формализации) определенного логического содержания, позволяющего вводить отношение логического следования и понятие доказуемости (либо их аналоги). Исторически первым формализованным языком была силлогистика Аристотеля, реализованная с помощью стандартизованного фрагмента естественного (греческого) языка. Общую идею формализованного языка сформулировал Лейбниц (characteristica univeisalis), предусматривавший его расширение до «исчисления умозаключений» — calculus ratiocinator. В Новое время различные варианты формализованных языков разрабатывались на основе аналогии между логикой и алгеброй. Вехой здесь явились труды Моргана, Буля и их последователей, в особенности Шредера и Порецкого. Современные формализованные языки — в их наиболее распространенных формах — восходят к труду Фреге «Begriffsschrift» — «Запись в понятиях» (1879), от которого идет главная линия развития языка логики высказываний и (объемлющей ее) логики (многоместных) предикатов, а также применение этих логических языковых средств к задачам обоснования математики.
Характерная структура таких формализованных языков: задание алфавита исходных знаков, индуктивное определение (правильно построенной) формулы языка, т. н. задание правил образования, задание правил вывода, т. н. правил преобразования, которые сохраняют выделенную логическую характеристику формул (истинность, доказуемость и др.). Добавление правил преобразования превращает формализованный язык в логическое исчисление. Существует много видов формализованных языков: это прежде всего языки дедуктивно-аксиоматических построений, систем натурального («естественного») вывода и секвенциальных построений, аналитических таблиц, систем «логики спора» и многих других.
Формализованные языки различаются по своей логической силе, начиная с «классических» языков (в которых в полной мере действуют аристотелевские законы тождества, противоречия и исключенного третьего, а также принцип логической двузначности) и кончая многочисленными языками неклассических логик, позволяющих ослаблять те или иные принципы, вводить многозначность оценок формул либо их модальности. Разработаны языки, в которых логические средства в том или ином смысле минимизируются. Таковы языки минимальной и положительной логик или язык логики высказываний, использующий единственную логическую операцию, напр. штрих Шеффера (см. Логические связки).
Формализованные языки обычно характеризуют в терминах синтактики и семантики. Но самым существенным является та логическая характеристика его формул, которая сохраняется правилами вывода (истинность, доказуемость, подгверждаемость, вероятность и пр.). Для любого формализованного языка фундаментальными являются проблемы полноты выражаемой в нем логики, ее разрешимости и непротиворечивости; напр., язык классической логики высказываний полон, разрешим и непротиворечив, а классической логики предикатов (многоместных) хотя и полон, но неразрешим; язык же расширенного исчисления предикатов — с кванторами по предикатам и неограниченным применением принципа абстракции — противоречив (такой была логико-арифметическая система Фреге, в которой Рассел обнаружил антиномию, названную его именем).
Формализованный язык может быть «чистой формой», т. е. не нести никакой внелогической информации; если же он ее несет, то становится прикладным формализованным языком, специфика которого — наличие постоянных предикатов и термов (дескрипций) — напр. арифметических, — отражающих свойства прикладной области. Для формализации теорий высокого уровня абстракции формализованный язык может по-разному видоизменяться, расширяться либо «надстраиваться»; пример: формализация классического математического анализа как арифметики второго порядка (т. е. с кванторами по предикатным переменным). В ряде случаев формализованный язык содержит логические структуры многих — даже бесконечно многих — порядков (такова, напр., «башня языков» А. А. Маркова, служащая формализации конструктивной математики, или интерпретация модальностей в виде иерархии «возможных миров»). Семантическая база формализованного языка логики может быть теоретико-множественной, алгебраической, вероятностной, теоретико-игровой и др. Возможны и такие ее «ослабления», которые лишь родственны вероятностной семантике — так возникает, напр., формализованный язык «расплывчатой логики» (в смысле Заде). Тогда язык приобретает специфическую прагматику, принимающую во внимание фактор носителя языка (дающего оценку «функции принадлежности» предмета объему данного понятия). Здесь проявляется крепнущая ныне тенденция учета в формализованных языках «человеческого фактора» — в том или ином его виде, что явно проявляется в некоторых формализованных языках логики квантовой механики. В другом направлении идет разработка формализованных языков, семантика которых предполагает отказ от экзистенциальных допущений либо те или иные онтологические предпосылки — о допустимости правил с бесконечным числом посылок, «многосортности» предметных областей, даже противоречивых, и т. д.
Непременной чертой формализованного языка является «возможностное» истолкование правил вывода; напр., на определенном шаге мы вольны использовать либо не использовать, скажем, правило modus ponens. Этой черты лишены алгоритмические языки, носящие «предписывающий» характер. Но по мере развития компьютерной логики и разработки программ «описывающего» типа это различие начинает сглаживаться. В этом же направлении действует и разработка формализованных языков, ориентированных на решения задач эвристики.
Лит.: ЧерчА. Введение в математическую логику, т. 1. M., 1960; Клинч С. К. Введение в метаматематику М., 1957; КарриХ. Основания математической логики. М., 1969; Фрейденталь X. Язык логики. М., 1969; Смирнова Е.Д. Формализованные языки и проблемы логической семантики. М., 1982.
Б. В. Бирюков

Источник: Новая философская энциклопедия