разрешающий метод для проблемы общезначимости формул классической, интуиционистской и модальной (система S4) логики высказываний. В сочетании с некоторыми дополнительными приемами этот метод применим и для классической и интуиционистской логики предикатов. В последнем случае метод аналитических таблиц представляет собой полуразрешающую процедуру, поскольку положительное решение вопроса об общезначимости достижимо для любой общезначимой формулы, а отрицательное — не для всякой необщезначимой формулы. Так как к вопросу об общезначимости формул сводятся вопросы о наличии логического следования, а также несовместимости по истинности (ложности) формул языков соответствующих логических систем, то аналитические таблицы применимы и для решения этих вопросов.
Построение аналитической таблицы для некоторой формулы А начинается с предположения о ее ложности. Далее по правилам построения осуществляется сведение этого предположения к все более простым условиям ложности А в виде выражений ТВ («истинно В») и FB («ложно В»), называемых отмеченными формулами (далее «ТГ-формулы»), где В— формула соответствующей системы. В случае общезначимости А процесс редукции приводит к противоречию.
Правила построения аналитических таблиц специфичны для каждой системы, а также зависят от способа их построения. Имеются два таких способа: в виде дерева, или множества столбцов (когда ветви дерева рассматриваются как столбцы), и в виде последовательности семейств множеств ТУ-формул, называемых конфигурациями.