Независимости аргументов от тезиса правилоНЕЗАВИСИМОСТЬ в

НЕЗАВИСИМОСТЬ

Найдено 4 определения термина НЕЗАВИСИМОСТЬ

Показать: [все] [краткое] [полное] [предметную область]

Автор: [отечественный] Время: [советское] [постсоветское] [современное]

Независимость

синоним слова свобода, абсолютно-относительное понятие, представляющее вполне определенную ценность для человека, народа. В то же время, попадая под влияние культуры, цивилизации, государства, СМИ, рекламы и т.п., человек полностью теряет свою независимость....Плата за спокойствие - потеря независимости - шаг к тоталитаризму, но это вектор движения человечества.... В плане неопределенных понятий, таких, как свобода, достоинство и т.п., представляет интерес для теории и практики управления большими массами людей. Идея независимости позволяет под видом борьбы за свободу и независимость полностью лишить людей именно ее.

Ассоциативный блок.

Держаться независимо - демонстрировать собственную глупость и еще, как минимум, невоспитанность.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Теоретические аспекты и основы экологической проблемы: толкователь слов и идиоматических выражений

НЕЗАВИСИМОСТЬ (в логике и математике)

- невыводимость предложения некоторой теории из данного множества ее предложений, напр. из системы ее аксиом. Система аксиом называется независимой (неизбыточной), если каждая входящая в нее аксиома невыводима из других аксиом. Если какую-то аксиому можно вывести из остальных, ее можно исключить из списка аксиом, при этом исходная теория не изменится, класс доказуемых в ней предложений останется тем же.

Зависимая система аксиом содержит лишние аксиомы и в этом смысле является менее совершенной, чем независимая.

Требование Н. распространяется и на правила вывода аксиоматической теории. Исходное правило вывода независимо, если оно не может быть получено в качестве производного правила в системе, из которой оно исключено. Можно также сказать, что аксиома или правило вывода независимы, если существует теорема, которая не может быть доказана без этой аксиомы или этого правила вывода.

Н. имеет по преимуществу эстетическую и дидактическую ценность. Исследование Н. способствует, как правило, лучшему пониманию строения изучаемой теории и ее возможностей.

Исторически первым доказательством Н. было доказательство невыводимости пятого постулата Евклида о параллельных из остальных его постулатов.

Требование Н. может быть распространено не только на аксиомы и правила вывода аксиоматических теорий, но и на исходные их термины (понятия). Термин независим, если он неопределим через остальные исходные термины. Теория с неизбыточным исходным словарем не содержит лишних понятий и является в этом отношении более совершенной, чем теория с зависимыми понятиями.

Зависимость некоторой аксиомы от остальных показывается путем вывода ее из них. Н. аксиомы можно доказать, найдя свойство, присущее всем другим аксиомам и не присущее рассматриваемой.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Словарь по логике

НЕЗАВИСИМОСТЬ

в логике и м а т е м а т и к е) – св-во предложения нек-рой теории (или формулы нек-рой формальной системы), заключающееся в том, что ни само это предложение (соответственно формула), ни его (ее) отрицание логически не выводятся (по правилам вывода формальной системы) из данной системы предложений (конъюнкции данных формул); когда рассматриваемое предложение (или формула) является аксиомой данной теории, говорят о Н. (в только что определенном смысле) этой аксиомы от остальных аксиом теории. Н. к.-л. предложения (или формулы) относительно данной системы аксиом (безразлично – содержательно понимаемых предложений или же формул исчисления; ниже термин "аксиома" можно всюду понимать в любом из этих смыслов) может быть доказана путем установления непротиворечивости каждой из двух систем аксиом, одна из к-рых получается присоединением к данной системе аксиом рассматриваемой аксиомы, а другая – прибавлением к данной системе отрицания рассматриваемой аксиомы (система аксиом, относительно к-рой рассматривается вопрос о Н., как правило, предполагается непротиворечивой, поскольку в противном случае из нее можно было бы вывести любое предложение данной теории). С Н. связано и др. важное свойство аксиоматич. систем – полнота: если (непротиворечивая) система аксиом (дедуктивно) полна, то присоединение к ней любой независимой от нее формулы (той же формальной системы) в качестве аксиомы делает систему противоречивой; любая же формула, присоединение к-рой к аксиомам полной системы сохраняет непротиворечивость последней, может быть выведена из совокупности данных аксиом (зависит от них). Термин "Н." часто употребляется и по отношению к нек-рой совокупности (системе) предложений (формул): совокупность наз. независимой (или н е и з б ы т о ч н о й), если каждый ее элемент независим от с о в о к у п н о с т и остальных (в определенном выше смысле). В отличие от непротиворечивости и полноты, Н. не имеет принципиального значения для формально-аксиоматич. (и тем более содержательно-аксиоматич.) теорий; требование Н. есть проявление естеств. стремления к тому, чтобы не использовать в качестве исходных предложений такие, к-рые могут быть выведены из др. аксиом теории. Однако исследования, касающиеся Н. к.-л. системы аксиом или отд. ее предложений, играют часто важную методологич. роль; попытки решения мн. математич. и логич. проблем оказались обреченными на неудачу из-за Н. искомого предложения от остальных постулатов теории. Классич. примером такой проблемы служит 5-й постулат Эвклида о параллельных, предположение о Н. к-рого от остальных эвклидовых аксиом (а затем и доказательство этой Н.) привело к открытию неэвклидовой геометрии. Ряд важных результатов о Н. получен в математической логике. Термин "Н." употребляется в логике (и математике) и для характеристики отношения между различными понятиями (термами, операциями, логич. связками, функциями и пр.): понятие наз. независимым от данной системы понятий, если его нельзя определить (выразить) в терминах этой системы понятий (не привлекая дополнит. понятий). Разумеется, о Н. в этом смысле можно говорить лишь в рамках фиксированной системы правил определения (образования) понятий (к к-рым, вообще говоря, также применимо понятие Н.), подобно тому как Н. в первом смысле всегда предполагает фиксацию системы правил вывода (доказательства) предложений, причем для самих правил вывода в свою очередь встает проблема Н. Аналогичным образом можно говорить о Н. системы понятий. Лит. см. при ст. Метод аксиоматический. Ю. Гастев. Москва.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философская Энциклопедия. В 5-х т.

НЕЗАВИСИМОСТЬ

категория бытия и познания, означающая наличие у объектов и систем собственного начала, не определяемого их внешним окружением и не зависящего от бытия других объектов и систем. Наличие самоценности объектов и систем определяет их специфику и образует необходимое условие разнообразия в мире.

Представления о независимости играли существенную роль в становлении классической механики как первой естественнонаучной теории. Независимость входит в механику в процессе задания начальных условий: при анализе поведения системы (совокупности) тел начальное состояние каждой из них не зависит и не определяется состояниями других тел. Тем самым независимость в механике выражает сам факт наличного бытия объектов и систем вне зависимости от существования других объектов и систем. Происхождение этих сущностей жханику ке интересует. Независимо «возникшие» объекты и системы могут взаимодействовать друг с другом, могут находиться в весьма жестких и однозначно определяемых взаимоотношениях, но сам факт их бытия независим от бытия других подобных объектов. Так понимаемая независимость имеет весьма широкие приложения. Напр., в логике и математике вводятся представления о независимости аксиом в формализованных системах и независимых переменных в структуре уравнений.

Существенные преобразования в представлениях о независимости произошли в ходе становления теоретико-вероятностных методов исследования, в ходе раскрытия природы статистических закономерностей. В механике независимость характеризовала лишь само происхождение объектов, но взаимоотношения между объектами и их поведение определялись жестким, однозначным образом внешним окружением, внешними воздействиями других объектов. Теоретико-вероятностный взгляд на бытие означает, что уже в своем поведении объекты и системы не всецело зависят от внешних условий и воздействий. Объекты и системы характеризуются внутренней динамикой, внутренними степенями свободы, что означает, что их поведение включает в себя процессы самодетерминации.

Представления о независимости соотносятся с любой областью исследований, с любой областью бытия. Они играют громадную роль в познании живых систем. Рассматривая проблемы биокибернетики в связи с фундаментальными работами И. И. Шмальгаузена в этой области, А. И. Берг и А. А. Ляпунов отмечали: «Независимость — это такое же фундаментальное явление природы, как и наличие взаимозависимости» (Берг А. И., Ляпунов А. А. Предисловие.— В кн.: Шмлчьгаузен И. И. Кибернетические вопросы биологии. Новосибирск, 1968,с.10).

Несмотря на столь основополагающую роль независимости, проя&тяется она всегда в сопряжении с зависимостью, с наличием разнообразных и устойчивых связей в реальном мире. Абсолютно независимые сущности невозможно познавать. Разнообразие реального мира представлено неисчерпаемым множеством систем, которые образуются благодаря наличию устойчивых взаимосвязей между составляющими их элементами. Образование структур из некоторых элементов можно рассматривать как ограничение их независимости. Представления об индивидуализированных независимых частицах (объектах) являются весьма бедными. Одна независимость породить разнообразие мира не в состоянии. Конструктивно независимость проявляет себя лишь в сочетании с зависимостью. Независимость выражает подвижное, мобильное начало мира, а зависимость — устойчивое, неизменное. Независимость выражает отчужденность объектов и систем, а действие зависимости преодолевает эту отчужденность на основе раскрытия более глубоких свойств этих объектов и систем. Реальные системы и объекты представляют собой конкретные формы синтеза независимости и связности, конкретные формы их организации. В истории общества остро вставали вопросы политической независимости. Провозглашалось, что именно независимость (суверенитет) в ее наиболее полном выражении представляет необходимую предпосылку развития государств, наций и регионов. Идея независимости содействовала во многих случаях мобилизации внутренних сил и ресурсов, направленной на развитие соответствующих национально-территориальных образований. Эта идея нередко приобретала такую силу, что приводила к национально-освободительным войнам.

Идея независимости породила многие новые государства. Вместе с тем стремление к полной, ничем не ограниченной независимости в современном мире ведет к самоизоляции и резко ограничивает возможности материального и духовного развития общественных субъектов. Прогрессивное развитие общественных структур становится невозможным вне развития целого. Мир, его государства и регионы в своем развитии стали взаимозависимыми. Идея политической независимости в современном мире оправданна, если она служит как интересам наций и государств, так и глобальным целям человечества.

Ю. В. Сачков

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Новая философская энциклопедия

Найдено схем по теме НЕЗАВИСИМОСТЬ — 0

Найдено научныех статей по теме НЕЗАВИСИМОСТЬ — 0

Найдено книг по теме НЕЗАВИСИМОСТЬ — 0

Найдено презентаций по теме НЕЗАВИСИМОСТЬ — 0

Найдено рефератов по теме НЕЗАВИСИМОСТЬ — 0