ЛОГИКА ВЫСКАЗЫВАНИЙЛОГИКА ВЫСКАЗЫВАНИЙ, пропозициональная логика

ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА

Найдено 2 определения термина ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА

Показать: [все] [краткое] [полное] [предметную область]

Автор: [отечественный] Время: [постсоветское]

ЛОГИКА ВЫСКАЗЫВАНИЙ, или Пропозициональная логика

- раздел логики, формализующий употребление логических связок "и", "или", "не", "если, то" и т. п., служащих для образования сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется сложным. В Л. в. простые высказывания рассматриваются в отвлечении от их внутренней (субъектно-предикатной) структуры. Та или иная истинностная оценка высказывания именуется его истинностным значением.

В логике классической предполагается, что простое высказывание является либо истинным, либо ложным (см.: Двузначности принцип) и что истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.

Так, соединение двух высказываний с помощью связки "и" дает сложное высказывание (именуемое конъюнкцией), являющееся истинным, только когда оба составляющие его высказывания истинны. Сложное высказывание, образованное с помощью связки "или" (дизъюнкция), истинно, если и только если хотя бы одно из двух входящих в него высказываний истинно. Сложное высказывание, образованное с помощью "не" (отрицания), истинно, если только исходное высказывание ложно. Сложное высказывание, полученное из двух высказываний с помощью связки "если, то" (импликация), истинно в трех случаях: оба входящие в него высказывания истинны, оба они ложны, первое из этих высказываний (следующее за словом "если") ложно, а второе (следующее за словом "то") истинно; импликация является ложной только когда первое из составляющих ее высказываний истинно, а второе ложно.

Возможны и другие способы образования сложных высказываний. Всего в классической двузначной логике четыре способа образования сложного высказывания из одного высказывания и шестнадцать способов образования сложного высказывания из двух высказываний.

Язык Л. в. включает бесконечное множество переменных: р, q, r,..., p1, q1, r1, ..., представляющих высказывания, и особые символы для логических связок : & - конъюнкция ("и"), v - дизъюнкция ("или"), ~ - отрицание ("не" или "неверно, что"), -> - импликация ("если, то"). Роль знаков препинания обычного языка играют скобки. Понятие формулы в Л. в. определяется так: отдельная переменная является формулой; если A и В - формулы, то (А&В), (AvB), ~A и (A->B) также формулы.

Формулам Л. в., образованным из переменных и связок, в естественном языке соответствуют предложения. Напр., если р есть высказывание "Сейчас ночь", q - высказывание "Сейчас темно" и r - высказывание "Сейчас ветрено", то формула (p->(qvr)) представляет высказывание "Если сейчас ночь, то сейчас темно или ветрено", формула ((q&.r)->p) - высказывание "Если сейчас темно и ветренно, то сейчас ночь", формула (~q->~p) - высказывание: "Если неверно, что сейчас темно, то сейчас не ночь" и т. п. Подставляя вместо переменных другие высказывания, получим другие переводы указанных формул на обычный язык.

Каждой формуле Л. в. можно поставить в соответствие таблицу истинности, указывающую зависимость истинностного значения формулы от истинностных значений входящих в нее переменных. Напр., формула (~q->~p) принимает значение "ложно" только в случае ложности q и истинности р.

Формула Л. в. называется тождественно-истинной, или тавтологией, если и только если она принимает значение "истинно" при всех распределениях истинностных значений входящих в нее простых высказываний. Формула, принимающая при всех распределениях значение "ложно", называется противоречием. Тавтологии выражают логические законы. К тавтологиям относятся, в частности, формулы:

(р->р) - закон тождества, ~(р&~р) - закон непротиворечия,

(pv~p) - закон исключенного третьего, (p->q)->(~q->~p) - закон контрапозиции.

Множество тавтологий бесконечно.

Л. в. может быть представлена также в форме логического исчисления, в котором задается способ доказательства некоторых высказываний (формул), называемых теоремами. Исчисление может быть формализовано с помощью аксиоматического метода. При этом указываются формулы, принимаемые в качестве аксиом, и задаются правила вывода, позволяющие получать из аксиом теоремы. Аксиоматическое исчисление высказываний строится таким образом, чтобы класс теорем совпадал с классом тавтологий, т. е. чтобы каждая теорема была тавтологией и каждая тавтология - теоремой (см.: Полнота). По отношению к аксиоматическому построению встают также вопросы о его непротиворечивости и независимости принятых аксиом и правил вывода.

Наряду с классической Л. в., предполагающей, что всякое высказывание является истинным или ложным, существуют многообразные неклассические Л. в. В числе последних - многозначные Л. в., интуиционистская Л. в. и др.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Словарь по логике

ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА

раздел дедуктивной логики, в котором вопрос об истинности (или ложности) высказываний (т. е. суждений, рассматриваемых без их субъектно-предикатной структуры) в умозаключениях рассматривается на основе изучения следующего средства их выражения - т. н. элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью логических операций.

Первые исследования в этом направлении начались еще в античности, в большей степени они принадлежат школе ранних стоиков (Хрисипп, III в. до н. э.). В рамках Schullogik эта тема представлена рассмотрением выводов из т. н. сложных суждений (сложным называется суждение, в состав которого входят другие суждения). Современный вид она стала приобретать благодаря работам прежде всего Дж. Буля, а также А. Моргана, Ч. Пирса, Э. Шредера и др. Дальнейшее ее оформление связано с творчеством Г. Фреге, Б. Рассела, Д. Гильберта, Л. Витгенштейна и др.

Л. в., входящая в основание других логических теорий (таких как логика "Редикатов, модальная логика), является вводной частью, своеобразными пролегоменами всей математической логики, поэтому ее представление предваряет изложение логики предикатов (следует Учесть, что нотационные соглашения, т. е. названия и обозначения, в различных зданиях варьируются).

В основе алфавита языка Л. в. лежит непустое счетное множество атомарных формул Фо. Атомарные формулы выражают элементарные высказывания. Кроме того, алфавит содержит логические связки (союзы, операторы), выражающие логические операции. В ряду основных логических связок выделяют унарную связку "отрицание" - обозначается значком -? (читается "не-") и бинарные связки: "конъюнкция" - & ("и"), "дизъюнкция" - ? ("или"), "импликация" - -> ("если..., то..."), "эквивалентность" - ("..., если и только если..."), "строгая дизъюнкция" - ("либо..., либо..."). Логические операции носят соответствующие cвязкам названия.

Л. в. располагает синтаксической категорией формул. Множество формул обозначается - Ф, а сами формулы - А, В, С... Эффективная процедура, позволяющая определить, является ли данное выражение правильно построенной формулой Л. в., характеризуется следующими пунктами: a) Фо с Ф, т. е. все атомарные формулы есть формулы; b) Если А и В формулы, то (-.А), (А & В), (? ? В), (А -> В), (А В), (А В) тоже формулы; c) Больше никаких правильно построенных формул Л. в., кроме указанных в пунктах а) и Ь), нет.

Исследование свойств таких формул и способов установления их истинности является основной задачей Л. в. Существует два подхода к построению данной теории: алгебра высказываний и исчисление высказываний.

Алгебра высказываний, или по-другому - истинно-функциональная логика, рассматривает логические формулы как алгебраические выражения, которые можно преобразовывать по определенным правилам. Буквы, обозначающие формулы, здесь играют роль пропозициональных переменных (аргументов), а логические связки - роль пропозициональных констант, или истинностных функторов, поскольку они определены через функции с областью значений - истина, ложь (обозначаемых соответственно "и" и "л"). Значение логических связок в алгебре высказываний определяют через истинностные таблицы.

Метод истинностных таблиц есть способ установления истинности высказываний, построенных в Л. в., т. к. логические функторы по заданным значениям аргументов однозначно определяют результат. Поставив в заданную формулу вместо переменных их значения и выполнив над ними указанные логические операции в порядке, зависящем от расстановки скобок в формуле, получим в результате значение "и" или "л" для всей формулы и, следовательно, установим истинность (или ложность) сложного высказывания, описанного этой формулой.

Формула пропозициональной логики называется тавтологией, если она истинна при любом возможном распределении истинностных значений переменных, входящих в нее. Существует множество методов определения, является ли формула тавтологией. Наиболее распространенный метод - метод истинностных таблиц. Например, легко проверить, что формулы, выражающие логические законы, являются тавтологиями. Метод истинностных таблиц может быть использован при доказательстве или опровержении корректности вывода посредством преобразования вывода в импликацию, где конъюнкция посылок составляет антецедент (левую часть импликации), а заключение совпадает с консеквентом (с правой частью импликации). Если эта импликация - тавтология, то вывод, представленный в ней указанным выше способом, корректен.

Например, корректность применения modus ponens подтверждается тем что формула (((А -> В) & А) -> В) - тавтология. Для обоснования, вместо базового, но громоздкого метода истинностных таблиц, приведем его сокращенный (устный) вариант, называющийся методом "приведения к абсурду". Допустим что формула (((А -> В) & А) -> В) - не тавтология, значит, она может иметь значение "л" по крайней мере при одном наборе значений аргументов. Но для того, чтобы эта формула имела значение "л", значение ее подформулы ((А -> В) & А) должно быть "и", а значение В - "л". Но истинное значение подформулы ((А -> В) & А) может иметь место только при истинных значениях ее конъюнктов - (А -" В) и А. Мы получили обязательные значения А - "и" и В - "л"; подставив их в подформулу (А -> В), получаем ее ложное значение. Мы получили противоречие (абсурд): с одной стороны, для того чтобы формула (((А -> В) & А) -> В) имела ложное значение, необходимо, чтобы ее подформула (А -> В) была истинной, а с другой стороны - ложной Но этого не может быть, следовательно, исходная формула не имеет значения лжи ни при каком наборе значений ее аргументов, т. е. она тавтология.

Исчисление высказываний имеет дело с теми же логическими формулами, но устроено как логическое исчисление (см. "Исчисление логическое"). Существуют различные варианты исчисления высказываний, каждый из которых имеет свои аксиомы и свои правила вывода Для аксиом используются тавтологии Обычно используют два правила вывода: правило подстановки и modus ponens (Правило подстановки: "Из формулы F(A), содержащей букву А, выводима любая формула F(B), получающаяся заменой всех вхождений А в формуле F на произвольную, но одинаковую для всех вхождений А, формулу В". Оно позволяет формулировать логические законы как соотношения между простыми высказываниями, а затем распространять эти законы на любые сложные высказывания.) Оба правила широко используются во всех логических рассуждениях.

Исчисление высказываний строится как дедуктивная система. Это означает, что подходящие аксиомы и правила выхода задаются т. о., что каждая тавтология может быть доказана, следовательно, исчисление является семантически полным. Оно также разрешимо и непротиворечиво: для каждой системы исчисления высказываний определено, что теоремы в ней - только тавтологии, а в множестве истинных предложений, какими являются тавтологии, ни одно предложение не противоречит другому.

А. Г. Кислов

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Современный философский словарь

Найдено схем по теме ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА — 0

Найдено научныех статей по теме ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА — 0

Найдено книг по теме ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА — 0

Найдено презентаций по теме ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА — 0

Найдено рефератов по теме ЛОГИКА ВЫСКАЗЫВАНИЙ, или ПРОПОЗИЦИОНАЛЬНАЯ ЛОГИКА — 0