ИзменчивостьИЗМЕРЕНИЕ ВРЕМЕНИ

ИЗМЕРЕНИЕ

Найдено 13 определений термина ИЗМЕРЕНИЕ

Показать: [все] [краткое] [полное] [предметную область]

Автор: [отечественный] Время: [советское] [постсоветское] [современное]

ИЗМЕРЕНИЕ

процесс определения отношения одной величины (измеряемой) к другой, принятой за постоянную единицу измерения.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Глоссарий философских терминов проекта Distance

ИЗМЕРЕНИЕ

совокупность действий, выполняемых с целью нахождения числового значения измеряемой величины в принятых единицах измерения; протяженность. В математике линия имеет одно измерение (длину), поверхность - два (длину и ширину), тело - три (длину, ширину и высоту); см. также Континуум. В физике измерение есть отношение физической единицы к осн. единицам длины, массы и времени (см, г, сек), так, напр., единицей измерения скорости является см/сек.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философский энциклопедический словарь

Измерение

экспериментальное сравнение искомой величины с эталонной единицей измерения. Измерения классифицируют в зависимости от природы измеряемой величины, характера ее изменений во времени, условий выполнения. Различают прямые измерения (например, длины чего-либо проградуированной линейкой) и косвенные (через измерение другой величины, функционально связанной с измеряемой величиной), статические и динамические, абсолютные и относительные. Важную роль при измерениях играет учет погрешностей, среди которых различают систематические и случайные.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Начала современного естествознания: тезаурус

ИЗМЕРЕНИЕ

процедура сравнения двух величин, в результате которой экспериментально устанавливаются отношения между искомой величиной и другой, принятой за единицу (эталон). На теоретико-множественном уровне измерение можно определить как операцию однозначного соответствия элементов двух множеств, из которых одно есть натуральный ряд чисел, а второе есть результат искусственного разбиения количественно определяемой интенсивности (длины, веса и т. п.) с помощью конвенционально выбранного эталона квантования. (См. сравнение, эмпирическое познание, эксперимент).

Ф.В. Лазарев

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философия науки: Словарь основных терминов

ИЗМЕРЕНИЕ

познавательная процедура, осуществляемая на эмпирическом уровне научного исследования и включающая определение характеристик (веса, длины, координат, скорости и пр.) материальных объектов с помощью соответствующих измерительных приборов. В конечном счете И. сводится к сравнению измеряемой величины с нек-рой однородной с ней величиной, принятой в качестве эталона (единицы). Посредством той или иной системы единиц И. дается количественное описание свойств тел, составляющее важный элемент познания. И. повышает степень точности нашего знания. Неправильно истолковывая возрастающую роль И. в изучении микроявлений, позитивисты трактуют его как порождение, “приготовление” объекта субъектом (“приборный идеализм”) или сводят содержание физических понятий к отдельным измерительным операциям (Опера-ционализм).

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философский энциклопедический словарь

ИЗМЕРЕНИЕ

познават. процесс, определение отношения одной (измеряемой) величины к другой, принятой за постоянную (к единице И.). Полученное в результате И. число (выражающее такое отношение) наз. численным значением измеряемой величины. По характеру выполняемых в процессе И. операций различают прямые и косвенные И.; в последнем случае измеряется не непосредственно измеряемая величина, а нек-рая другая, связанная с ней заранее известным соотношением. И. органически связано с наблюдением и экспериментом, образуя вместе с ними эмпирич. основу науч. познания. Отвергая концепции И., характерные для позитивизма (толкующего И. как источник физич. законов и физич. величин) и операционализма (сводящего содержание физич. понятий к отд. операциям И.), диалектич. материализм рассматривает И. как важнейший момент в отражении объективно существующих соотношений между материальными объектами.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Советский философский словарь

ИЗМЕРЕНИЕ

совокупность действий, выполняемых с целью получения числового значения измеряемой величины в принятых единицах И. В математике линия имеет одно И. (длину, она одномерна), плоскость — два (длину и ширину, двумерный объект). Если объект имеет n независимых И., то говорят, что он n-мерен. В физике И. физ. величины означает ее сравнение (см. Компаративный анализ) с однородной физ. величиной, принятой за единицу И. В естествознании к выбору единиц И. подходят след. образом: произвольно выбирают единицы И. лишь для нек-рых осн. величин. Для всех остальных (производных) величин единицы И. устанавливают через основные с помощью матем. формул. Совокупность всех осн. и производных единиц И. в той или иной науч. дисциплине образует систему единиц, или таксономию. В России принята Междунар. система единиц CИ (SI) — система интернациональная. И. — необходимый элемент эксперимента. Ф.М.Дягилев

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: История и философия науки. Энциклопедический словарь

ИЗМЕРЕНИЕ

это  метод, предполагающий использование специальных измерительных  приборов, что позволяет повысить точность познания, для сравнения двух или более величин, в результате которой устанавливаются отношения между  искомыми и эталонными величинами. Введение измерения превращает исследование в строгую науку. Оно дополняет качественные методы познания количественными. В основе измерения лежит сравнение объектов по каким-либо свойствам или сторонам и введения определенных  единиц измерения. Единица измерения  –  это  эталон  (ему  присваивается числовое значение),  при  помощи которого сравниваются объекты или явления. Единицы измерения подразделяются  на  основные (базисные)  и  производные  (выводимые  из  других единиц). В настоящее  время  в  естествознании  действует  международная  система  единиц (СИ), принятая в 1960 г. на XI Генеральной конференции по мерам и весам. СИ построена на  базе семи основных (метр, килограмм, секунда, ампер, кельвин, кандела, моль) и двух дополнительных (радиан, стерадиан) единиц. Международная система единиц физических величин является наиболее совершенной и универсальной  из  всех  существовавших  до  настоящего  времени.  Существует  несколько  видов измерения: 1) определяемые от времени – статические (остаются постоянными от времени) и  динамические (изменяющиеся во времени), 2) по способу получения результатов: прямые (получаются путем  непосредственного сравнения их с эталоном или выдаются измерительными приборами) и косвенные (искомую величину определяют на основании известной математической зависимости между этой величиной с другими, полученными путем прямых измерений). Технически возможности измерительных приборов отражают уровень  развития науки, а решение научных проблем открывает новые пути совершенствованию самих измерений.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философия науки и техники: словарь

ИЗМЕРЕНИЕ

в социальном исследовании, способ упорядочения социальной информации, при к-ром системы чисел и отношений между ними ставятся в соответствие ряду измеряемых социальных фактов. Различные меры повторяемости, воспроизводимости социальных фактов и являются социальными измерениями, или шкалами. С развитием общества получают распространение простые шкалы - ден. оценка труда, разряды квалификации, оценка успехов в обучении (система баллов), спорте и др. И. в обществ. науках отличается от таких «естественных» шкал точным определением измеряемых признаков и правил построения шкалы.

В социальных исследованиях И. впервые вошли в употребление в 1920-30-х гг., когда исследователи столкнулись с проблемой достоверности при изучении обществ. сознания, социально-психологич. установок (отношений), социального и проф. статусов, обществ. мнения, качеств. характеристик условий труда и быта и т. д. Эти И. являются примером стандартизованной групповой оценки, когда с помощью методов выборочной статистики измеряется «интенсивность» обществ. мнения.

И. разделяются на три типа: 1) номинальное - числа, приписываемые объектам на шкале, лишь констатируют отличие или тождество этих объектов, т. е. номинальная шкала есть по существу группировка или классификация; 2) порядковое - числа, приписываемые объектам на шкале, упорядочивают их по измеряемому признаку, но указывают лишь на порядок размещения объектов на шкале, а не на расстояние между объектами или тем более координаты; 3) интервальное - числа, приписываемые объектам на шкале, указывают не только на порядок объектов, но и на расстояние между ними. Интервальным И. является, напр., шкала привлекательности профессий. Такая шкала, придавая каждой профессии условный балл, позволяет сравнивать профессии по популярности, т. е. утверждать, что, напр., профессия шофера на M баллов популярнее профессии слесаря и на К баллов менее популярна, чем профессия летчика. Однако она не позволяет утверждать, что интерес к профессиям шофера и слесаря превышает интерес к профессии летчика, если сумма соответствующих баллов превышает балл профессии летчика. Нахождение количеств. меры социальных явлений и процессов ограничивается этими тремя типами И. Предпринимаются попытки создания четвертого типа И.- количественного, с введением единицы И.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Советский философский словарь

ИЗМЕРЕНИЕ

процедура сравнения данной величины с другой величиной, принятой за эталон (единицу). В широком смысле измерение представляет собой вид познавательной деятельности, в результате которой определенные объекты получают количественные характеристики. В практической деятельности и в научном исследовании имеют место различные типы измерительных процедур. Особенности различных типов этих процедур определяются природой измеряемых объектов, состоянием покоя или движения, приемами обработки полученных результатов, интерпретацией результатов измерения, определенными законами, которым подчиняются измеряемые объекты. В научной практике различают прямые и косвенные измерения. В прямых операция сравнения с эталоном проводится непосредственно на исследуемом объекте, напр., плотность тела вычисляется по его массе и объему. Во многих случаях физических исследований непосредственное измерение осуществляется с помощью приборов, которые заранее градуированы на нужную единицу измерения. Таковы, напр., приборы, измеряющие силу электрического тока или его напряжение.

В косвенных измерениях используется закономерная связь величины, которая непосредственно недоступна, с другими величинами, функционально связанными с интересующей величиной. Скажем, измерение величины элементарного электрического заряда возможно только посредством косвенных приемов. Аналогичные ситуации — в астрономии или в атомной физике.

Важнейшим условием процедуры измерения является постоянство эталона. Если эталон (единица измерения) оказывается подвержен изменению, то это неизбежно приводит к ошибкам. Искажение результатов измерения может обусловливаться и другими факторами, влияющими на процесс измерения. Среди этих факторов — несовершенство измерительной аппаратуры, естественные недостатки органов чувств исследователя, неполнота знаний о наблюдаемых явлениях, связанных с процедурой измерения. Все это вызывает неизбежные погрешности в результатах. Сами по себе погрешности становятся предметом исследования ради достижения точности измерения. Различают два класса погрешностей — систематические и случайные. Для изучения причин неточностей проводятся многократные повторения измерений. Если погрешности при этом остаются, то это указывает на систематичность погрешностей. Такие погрешности происходят, напр., от неверной градуировки приборов или от происшедшего изменения температуры применяемых эталонов, а также температуры приборов. Случайные погрешности весьма неопределенны по величине и по своим причинам. Случайность погрешностей обнаруживается в тех случаях, когда при тщательном измерении получаются различные результаты в последних значащих цифрах. Такого рода погрешности вызывают необходимость применения статистических методов. Особенное значение анализ процедур измерения приобрел для квантовой механики в свете соотношения неопределенностей, которое В. Гейзенберг (1927) интерпретировал как важнейшую закономерность для любого процесса измерения в атомной области. И хотя существуют основательные возражения против такой интерпретации соотношений неопределенностей, согласно которым их можно представить просто как соотношения рассеяния при изучении волновых процессов, тем не менее необходимо подчеркнуть, что именно анализ процесса измерения сыграл решающую роль в истории становления принципов квантовой физики.

В математике понятие измерения трактуется как протяженность (Dimension). Линия имеет одно измерение (длину), поверхность — два (длину и ширину), тело — три (длину, ширину и высоту). В современных (неевклидовых) геометриях вводится понятие многомерности пространства (пространства п-измерений). Лит.: Пфанцагль И. Теория измерений. М., 1976.

Овчинников

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Новая философская энциклопедия

ИЗМЕРЕНИЕ

представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или меньшей степени; числовая величина — такая, которая может быть выражена числом. Т.о., И. есть установление соотношения между числами и свойствами объектов. Если С обозначает некоторую степень измеряемого свойства, U— единицу И., а q — числовое значение соответствующей величины, то результат И. выражается следующим образом: Q = qU. Это уравнение называется «основным уравнением измерения», в соответствии с которым и осуществляется приписывание числовых значений измеряемым величинам (напр., температура данного тела равна 20 градусам). Для того чтобы результат И. был общезначим, в процессе И. необходимо соблюдать определенные правила И.

1. Правило эквивалентности: если физические значения измеряемых величин равны, то должны быть равны и их числовые выражения, символически: если Q1=Q2, то q1U = q2U.

2. Если физическое значение одной величины больше (меньше) физического значения другой величины, то числовое значение первой должно быть больше (меньше) числового выражения второй, символически: если Q1> Q2, то q1U > q2U.

Знаки, стоящие между Q1и Q2, не являются выражением обычных арифметических отношений, а представляют некоторые эмпирические соотношения между свойствами разных тел. Напр., если речь идет о весе двух тел, то знак "=" между Q1 и Q2 будет означать лишь то, что когда мы кладем одно тело на одну чашу весов, а др. тело — на вторую чашу, то весы оказываются в равновесии. Знак « > » между Q1 и Q2 означает, что одна чаша весов опустилась ниже другой.

3. Правило аддитивности: числовое значение суммы физических значений некоторой величины должно быть равно сумме числовых значений этой величины, символически: qU (Q1 + Q2} = q1U + q2U.

В формулировке данного правила между Q1 и Q2 помещают знак « + », обозначающий эмпирическую операцию соединения двух значений одной величины. Эту операцию следует отличать от арифметического сложения. Величины, соединение которых подчиняется указанному правилу, называются «аддитивными». Таковы, напр., масса, длина, объем в классической физике. Если соединить вместе два тела, то масса получившейся совокупности будет равна сумме масс этих тел. Величины, не подчиняющиеся указанному правилу, называются «неаддитивными». Примером неаддитивной величины может служить температура. Если соединить вместе два тела с температурой, скажем, 20°С и 50°С, то температура этой пары тел не будет равна 70°С. Существование неаддитивных величин показывает, что при обращении с количественными понятиями необходимо учитывать, какие конкретные свойства обозначаются такими понятиями, ибо эмпирическая природа этих свойств накладывает ограничения на операции, производимые с соответствующими количественными величинами.

4. Правило единицы И. Необходимо выбрать некоторое тело или легко воспроизводимый естественный процесс и охарактеризовать единицу И. посредством этого тела или процесса. Для температуры задают шкалу И., выбирая две крайние точки, напр., точку замерзания воды и точку ее кипения, и разделяют отрезок трубки между этими точками на определенное количество частей. Каждая такая часть является единицей И. температуры — градусом. Единицей И. длины является метр, времени — секунда. Хотя единицы И. выбираются произвольно, однако на их выбор накладываются определенные ограничения. Тело или процесс, избранные в качестве единицы И., должны сохранять неизменными свои размеры, форму, периодичность. Строгое соблюдение этих требований было бы возможно только для идеального эталона. Реальные же тела и процессы подвержены изменениям под влиянием окружающих условий. Поэтому в качестве реальных эталонов И. выбирают как можно более устойчивые к внешним воздействиям тела и процессы. В 1960 на Генеральной конференции по мерам и весам была принята Международная система единиц физических величин (СИ). Эта система действует и в России (с 1982).

Карнап Р. Философские основания физики. М., 1971; Никифоров А.Л. Философия науки: история и методология. М., 1998. А.Л. Никифоров

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философия: энциклопедический словарь

ИЗМЕРЕНИЕ

процедура присвоения символов наблюдаемым объектам в соответствии с некоторым правилом. Символы могут быть просто метками, представляющими классы или категории объектов в популяции, или числами, характеризующими степень выраженности у объекта измеряемого свойства. Символы-метки могут также представлять собой числа, но при этом не обязательно нести в себе характерную "числовую" информацию. Целью И. является получение формальной модели, исследование которой могло бы, в определенном смысле, заменить исследование самого объекта. Как всякое построение, И. приводят к потере части информации об объекте и/или ее искажению, иногда значительному. Потеря и искажение информации приводит к возникновению ошибок И., величина которых зависит от точности измерительного инструмента, условий, при которых производится И., квалификации наблюдателя. Различают случайные и систематические ошибки И. При исследовании отдельно взятого объекта ошибки обоих типов представляют одинаковую опасность. При статистическом обобщении информации о некоторой совокупности измеренных объектов случайные ошибки, в известной степени, взаимно "погашаются", в то время как систематические ошибки могут привести к значительному смещению результатов. Алгоритм присвоения символа объекту называется измерительной шкалой. Как всякая модель, измерительные шкалы должны правильно отражать изучаемые характеристики объекта и, следовательно, иметь те же свойства, что и измеряемые показатели. Различают четыре основных типа измерительных шкал, получившие следующие названия: шкала наименований, шкала порядка, интервальная шкала и шкала отношений. Шкала наименований или номинальная шкала используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже", и т.п. Примерами номинальных шкал являются: пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет. Единственным отношением, определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию. Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака: об объектах, отнесенных к одному из классов, известно но только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз) это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественно-научные шкалы (твердость минералов, сила шторма). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить на сколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному И. Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значении признака точному И. не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному И. (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п. В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных, в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы И., позволяющей определять, на сколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами. Основное различие между этими двумя шкалами состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями. Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст, расстояние, сила тока, время (длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль). Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого. Количественные шкалы делятся на дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач, и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств, могло бы быть измерено с любой необходимой степенью точности. Результаты И. непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для И. интеллекта), но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные И. Первичные получаются в результате непосредственного И.: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста, оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными И., обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или незачисление в институт по результатам вступительных экзаменов. Для проведения И. в естественных и точных науках, в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы. Качество И. определяется точностью, чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту (эталону). Чувствительность инструмента определяется величиной единицы И., например, в зависимости от природы объекта, расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов И. в пределах чувствительности шкалы. В гуманитарных и общественных науках (за исключением экономики и демографии) большинство показателей не поддаются непосредственному И. с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором.

О.В. Терещенко

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Новейший философский словарь

ИЗМЕРЕНИЕ

познават. процесс, в к-ром определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу П.); число, выражающее такое отношение, наз. численным значением измеряемой величины; т.о., И. величины означает нахождение ее численного значения посредством единицы И. И. применялось в человеч. практике еще в древности. С развитием произ-ва И. приобретает все большее значение в экономич. жизни, технике и науке. Ведущую роль И. в физико-математич. науках видели уже основатели естествознания (Галилей, Ньютон, Ломоносов и др.), для к-рых "мера и вес" лежали в основе точного знания. Одна из характерных черт физики, особенно современной, состоит в том, что для нее наблюдение и эксперимент органически связываются с определением численных значений физич. величин. С др. стороны, И. в совр. науч. исследованиях осуществляется обычно путем эксперимента, имеющего часто сложный характер. Поэтому в совр. м е т р о л о г и и – учении о мерах и точном И., эксперимент имеет решающее значение и роль измерит. приборов исключительно велика. О возрастающем значении И. в жизни общества и науч. познании свидетельствует вся история естествознания и философии. Аристотель, Леонардо да Винчи, Декарт, Ньютон, Лейбниц, Ломоносов, Кант, Гегель, К. Гаусс, Гельмгольц, Менделеев, Эйнштейн, Н. Бор и др. мыслители подвергли глубокому анализу различные стороны проблемы меры и И. Гносеологич. основы теории И. с позиций диалектич. материализма освещены в соч. классиков марксизма-ленинизма. Впервые это было сделано Марксом на материале политич. экономии в "Капитале" и др. его произведениях. Как отметил Энгельс, общий ход идей Маркса относительно И. имеет непосредственное отношение к И. в естествознании. Законченное И. предполагает обычно следующие составляющие элементы: 1) объект И., т.е. измеряемую величину; 2) измеряющую единицу, т.е. ту величину, с к-рой сравнивается измеряемая величина; 3) наблюдателя, т.е. субъекта, производящего И., а также измерит. приборы; 4) метод, посредством к-рого производится И.; 5) результат И. величины, представляющий собой именованное число. Нек-рые из этих элементов измерит. процесса, относительно четко выделяющиеся, когда мы имеем дело с отдельным законченным И., производимым человеком (наблюдателем), могут выпадать в случае, если измерит. процедура носит непрерывный характер, включена в общую систему работы автоматич. устройства; в этом случае наблюдатель непосредственного участия в И. может не принимать, т. к. информация, выдаваемая приборами, регистрирующими результаты И., перерабатывается непосредственно самим автоматом, использующим ее для выработки команд своим рабочим органам. Всякое точное И. величин предполагает применение законов, относящихся к измеряемым величинам, и опирается на определенные теоретич. предпосылки. Элементарной формой и исходным пунктом И. является п р я м о е И., т.е. такое, результат к-рого получается непосредственно из самого И. величины (напр., определение длины стола путем накладывания разделенной линейки, определение силы тока амперметром и т.д.). Прямые И. могут применяться для определения численных значений положит. скалярных величин и скалярных величин более общего типа, включающих в себя также нуль и отрицат. величины. Если нек-рая положит. скалярная величина выбрана за единицу И. [Q], то каждая другая величина того же рода Q выражается в виде: Q=q[Q], где q – вещественное число, к-рое может быть положительным, отрицательным или равным нулю, a q[Q] – результат И. Что касается И. векторных, а также тензорных и вообще многомерных величин, то оно приводится к И. скалярных величин. Высшей ступенью прямого И. является И. величины путем сравнения ее с единицей И., воплощенной в эталоне (эталонная форма И.). Эталон определенного свойства прежде всего доставляет вещам, обладающим этим свойством, материал для его выражения; иначе говоря, эталон выступает в качестве всеобщей меры. Кроме того, эталон выполняет функцию м а с ш т а б а , посредством к-рого определяется численное значение измеряемой величины. Чтобы выполнить функции всеобщей меры и масштаба, вещь, представляющая эталон, должна обладать максимальной неизменяемостью. Сравнение с эталоном практически проводится через с и с т е м у м е р. Эталонная форма И. развилась из более простых форм; исходной формой явилась случайная, или отдельная, форма И., отличающаяся тем, что И. величины определенного рода производится посредством к.-л. одной вещи, характеризуемой величиной того же рода. Уже в этой форме проявляются особенности И. как познават. процесса. То, что вещь А обладает свойством, к-рое может быть измерено, качественно выражается в способности др. вещи В быть сравниваемой с первой в отношении этого свойства, а количественно в том, что лишь определенное число вещей В равно вещи А в отношении этого свойства. Свойство вещи с его количеств. определенностью не существует только в его выражении посредством др. вещи, а существует независимо от всякого своего выражения, т.е. не результат И. определяет величину, а величина определяет результат ее И. В истории общества отдельная форма И. встречается лишь на первых ступенях измерит. техники, когда относит. неразвитость произ-ва не давала простора для прогресса технич. и эксперимент. средств. Эталонная форма И. исторически утверждается в условиях относительно высокого развития произ-ва и науки. Введение метрич. системы мер в период франц. революции конца 18 в. сыграло важнейшую роль в развитии точного И. Прямые И. недостаточны для определения меры многих величин, характеризующих явления объективного мира, особенно явления, к-рые непосредственно не воспринимаются органами чувств и познание к-рых требует экспериментальных устройств. Уже сравнение с эталонами, т.е. прямое И. высокой (метрологической) точности, практически не обходится без непрямого, или к о с в е н н о г о , И. К непрямому И. относится И. величины, численное значение к-рой получается на основании прямых измерений др. величин, связанных с измеряемой величиной определенной, математически выражаемой зависимостью. Напр., скорость v движущейся равномерно и прямолинейно частицы определяется по формуле v = s/t, где значения пути s и времени t определяются посредством прямых И., а вид функции устанавливается на основании определения понятия скорости равномерного и прямолинейного движения. Прогресс техники и точного естествознания выдвигал перед И. новые задачи, решение к-рых, в свою очередь, двигало вперед науку и технику. Историч. предпосылкой непрямого И. является открытие закономерных связей и единства различных явлений в отдельных областях природы и во всей природе в целом. Первая половина 19 в. дала для этого необходимый экспериментальный материал. Открытие термоэлектричества, вращательного магнетизма, работы А. Ампера, открытие М. Фарадеем электромагнитной индукции, открытие закона сохранения и превращения энергии послужили той базой, на к-рой К. Гаусс и В.. Вебер построили свою т.н. абс. систему единиц (1832–52) сначала для магнитных, а затем для электрич. величин, явившуюся первым выражением теории непрямого И. Теория непрямого И. охватила позже все физич. величины. Возникли понятия основных и производных единиц, системы единиц И., развилась теория размерностей, открывшая неизвестные прежде возможности предвидения физических явлений. Эти понятия и идеи покоятся в конечном итоге на использовании закономерных связей между различными физическими величинами. Развитие новой физики (теории относительности, квантовой теории) укрепило эту тенденцию и привело к мысли о применении законов физических явлений в качестве своеобразных идеальных эталонов; напр., в т.н. системе "естественных" абсолютных единиц М. Планка используются закон распространения света в пустоте, закон всемирного тяготения, принципы термодинамики, квантовый закон Планка с тем, чтобы получить систему единиц, независимых от особенностей тех конкретных веществ и явлений, к-рые образуют субстанцию обычных реальных эталонов. И. величин органически связано с познанием количеств. отношений материального мира. Это относится к количеств. отношениям не только в том конкретном виде, в к-ром они рассматриваются в физич. науках, но также к количественным отношениям, рассматриваемым в математике. Так, И. величин выдвигало в историч. развитии математики необходимость обобщения понятия числа: одним из таких обобщений явились иррациональные числа, к открытию к-рых привела задача И. отрезков. В совр. математике понятие меры множества представляет собой далеко идущее обобщение понятия длины отрезка, площади плоской фигуры и объема тела. При экспериментальном осуществлении И. получаются искажения результата И., вызываемые различными причинами и свидетельствующие об ограниченности эксперимента. Эти искажения, называемые ошибками И., по тем иди другим основаниям относятся к определенным классам. Одни из них, порождаемые недостатками данной измерит. аппаратуры, неправильной установкой измерит. прибора и т.п. (систематич. ошибки), исключаются экспериментальным путем. Др. искажения, порождаемые внешними акту И. обстоятельствами (случайные ошибки И.), экспериментально не могут быть исключены; их влияние на результат И. учитывается путем применения теории вероятностей и статистич. методов к множеству повторных И. Точность И. величины возрастает с развитием техники и науки. Однако эта точность обычно имеет пределы; напр., бессмысленно уточнять И. величин, характеризующих падение камня на землю, вне пределов нек-рых микромасштабов, т. к. за этими пределами величина приобретает др. физич. содержание. Но с учетом конкретного физич. содержания величины требование увеличения точности И. вполне правомерно; что же касается упомянутого выше учета физич. содержания величины, то он равнозначен применению нек-рой физич. теории к данным, доставляемым экспериментом, и предполагает, что физич. теория и эксперимент в своем развитии дают все более точное и полное отражение, объективного мира. Т.о., И. приводят к познанию законов природы; с др. стороны, познание последних дает возможности все точнее измерять физич. величины. Др. словами, неточности в И. относительны: они неизбежно возникают и необходимо "снимаются" в процессе познания. Переход классич. теорий физики в неклассические привел к уточнению старых и возникновению новых физических понятий и принципов, что нашло свое выражение в теории И. То обстоятельство, что при И. пространственных длин и временных промежутков необходимо, согласно теории относительности, учитывать движение системы отсчета, что при описании движения микрообъектов необходимо, согласно квантовой механике, учитывать, в нек-рой схематизованной форме, внутр. структуру приборов, означает в конечном итоге, что наука сделала новый шаг в познании движущейся материи. Точное И. предъявляет большие требования к абстрактному мышлению. Чувственное созерцание играет значительную, а порой и господствующую роль в И., когда не требуется высокой точности: И. длин, площадей, объемов "на-глазок" и т. п.; в процессах точного И. созерцание не имеет самостоят. характера и подчиняется абстрактному мышлению. Но, конечно, в И., если оно не является автоматическим, всегда участвуют органы чувств (глазу в процессе И. принадлежит особо важная роль). Присоединение прибора к органу чувств означает создание той необходимой связи между прибором и наблюдателем, к-рая является предпосылкой для выведения суждений об исследуемых явлениях. Поэтому анализ результатов И., требующий всегда учета данных, относящихся к приборам, и использования законов физики, часто предполагает также и учет закономерностей физиологии органов чувств. Вокруг проблемы И. в совр. науке идет непримиримая борьба материализма с идеалистич. и агностич. течениями. Идеалистич. позиция в филос. вопросах, относящихся к И., находит свое выражение в концепции, будто наблюдение и И. являются источником физич. законов, будто физич. величины и даже объекты не существуют независимо от эксперимента и И. Эта концепция получила гипертрофированное развитие у совр. позитивистов (см. Позитивизм, Операционализм), к-рые пытаются направить против материализма достижения теории относительности и квантовой физики. Так, соотношение неопределенностей (к-рое по своей действит. сути раскрывает содержание понятия квантового состояния, качественно отличающегося от аналогичного понятия в классич. механике) трактуется позитивистами в том духе, будто только И. микрообъекта позволяет "приписать реальность" его определ. свойству. Следует, однако, отметить, что у мн. физиков трактовка, приписывающая И. не свойственное ему содержание, связана не столько с сознательно принимаемой идеалистич. установкой, сколько с применением неправильно выбранной терминологии. В последние годы ряд выдающихся зарубежных ученых, разделявших раньше позитивистские взгляды, выступил против позитивизма и его понимания И. Так, Н. Бор считает, что в квантовой механике термин "И." должен употребляться в своем прямом смысле количеств. сравнения (сравнения с эталоном), и высказывается против применения таких выражений, как "измерение создает физические атрибуты объектов". Ошибочная т. зр. на И., свойственная идеализму и агностицизму, опровергается всем развитием науки и практики. Лит.: Маркс К., Капитал, т. 1, М., 1955; Энгельс Ф., Диалектика природы, М., 1955; его же, Анти-Дюринг, М., 1957; Ленин В. И., Материализм и эмпириокритицизм, Соч., 4 изд., т. 14; его же, Философские тетради, там же, т. 38; Гельмгольц Г., Счет и измерение, [пер. с нем.], Каз., 1893; Хвольсон О. Д., Курс физики, 7 изд., т. 1, Л.–М., 1933; Бриджмэн П. В., Анализ размерностей, пер. с англ., Л.–М., 1934; Mаликов ?. ?., Основы метрологии, ч. 1, М., 1949; Сена Л. ?.. Единицы измерения физических величин, 2 изд., Л.–М., 1948; Xалмош П. Р., Теория меры, пер. с англ., М., 1953; Беклемишев А. В., Меры и единицы физических величин, М., 1954; ?ок В. ?., Об интерпретации квантовой механики, в сб.: Философские проблемы современного естествознания, М., 1959; Лебег ?., Об измерении величин, пер. с франц., 2 изд., М., 1960; Бор Н., Квантовая физика и философия, в его кн.: Атомная физика и человеческое познание, пер. с англ., М., 1961; Wаillot J., Dimensionen, Einheiten, Ma?systeme, в кн.: Handbuch der Physik, hrsg. von H. Geiger und K. Scheel, Bd 2, В., 1926; Measurement. Definitions and theories, ed. by С. W. Churchman and P. Ratoosh, N. Y.–L., [1959]. M. Омельяновский. Москва.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философская Энциклопедия. В 5-х т.

Найдено схем по теме ИЗМЕРЕНИЕ — 0

Найдено научныех статей по теме ИЗМЕРЕНИЕ — 0

Найдено книг по теме ИЗМЕРЕНИЕ — 0

Найдено презентаций по теме ИЗМЕРЕНИЕ — 0

Найдено рефератов по теме ИЗМЕРЕНИЕ — 0