ФИЗИКА

Найдено 9 определений
Показать: [все] [проще] [сложнее]

Автор: [российский] [зарубежный] Время: [советское] [постсоветское] [современное]

Физика
Наука, изучающая взаимодействие вещества в окружающем нас материальном мире и энергии. Классическая, или ньютоновская, физика развивалась до появления квантового принципа. В современной физике считается, что как вещество, так и энергия состоят из дискретных единичных количеств — квантов. См. Квантовая физика.

Источник: Словарь научной грамотности. 1997 г.

Физика
от греч. physike, physis — природа) — наука, изучающая наиболее общие свойства материального мира, а именно: существующие формы материи и ее строение (атомы, молекулы, ядра, элементарные частицы, кристаллы, жидкости и пр.), взаимодействия и движения различных форм материи (электромагнитные, гравитационные, ядерные, слабые взаимодействия и многие другие процессы). Существенным фактором физики является пользование математикой (См. Физическая картина мира).

Источник: Начала современного естествознания: тезаурус

ФИЗИКА
одна из осн. естеств. наук (наук о природе), основа совр. естествознания. Изучает наиболее общие свойства материи и формы ее движения (мех., тепловую, электромагнитную, атомную, ядерную). Имеет мн-во разделов (механика, молекулярная Ф., электромагнетизм, оптика, атомная Ф., ядерная Ф., Ф. элементарных частиц) и видов. Фундаментальными теориями Ф. явл.: механика Ньютона, теория электромагнитного поля, спец. и общая теория относительности (см. Относительности теория), квантовая механика. Ф. явл. наиболее развитой наукой в методол. плане. Ее з-ны, методы, методол. принципы, теории и концепции широко используются в др. науках. Ф.М.Дягилев

Источник: История и философия науки. Энциклопедический словарь

ФИЗИКА
наука, изучающая фундаментальные и наиболее общие свойства и законы движения объектов материального мира. Понятия физики и физические законы — основа всего естествознания.
Термин «физика» (от греческого physis — природа) введен в науку Аристотелем. Развитие физики как современной науки началось после обоснования Н. Коперником гелиоцентрической системы мира: физика Аристотеля противоречила этой системе. Принципиальной важности шаг сделан Г. Галилеем, который превратил физику в экспериментальную науку. И. Ньютон ввел в физическую теорию математический аппарат изобретенного им (и независимо от него Г. Лейбницем) дифференциального и интегрального исчисления. Используя синтез экспериментальных и теоретических методов, Ньютон создал классическую механику, которая к началу XIX в. приобрела современную форму.
Целью физики является формулировка общих законов природы и объяснение конкретных явлений. Основные разделы физики: классическая механика, термодинамика и статистическая физика, теория электромагнетизма, теория относительности, квантовая механика. Физика служит научной основой большого числа технических наук и приложений (гидромеханика, теория тепломассобмена, техническая механика, микроэлектроника и др.). (См. физическая реальность).
Л.В. Лесков

Источник: Философия науки: Словарь основных терминов

Физика
Все, что относится к природе (от греческого physis), в частности – наука, изучающая природу (ta physika).
Если природа – все, как я полагаю, значит, физика призвана вместить в себя все прочие науки. Впрочем, это «призвание» не может быть реализовано с абсолютной полнотой. Например, представляется правдоподобным, что материя должна подчиняться одним и тем же законам как в живых, так и во всех прочих телах. Но чтобы понять, как действует тот или иной организм, нужна наука биология – ведь у жизни своя собственная разумность, без сомнения включенная в общую разумность неорганической материи (атомы везде одни и те же и подчиняются одним и тем же законам), однако отказать ей в собственном существовании мы можем только силой абстракции. Есть что‑то такое, что не позволяет приравнять живое тело к простой сумме составляющих его элементов. То же самое относится и к мышлению. Когда мне грустно, это наверняка соответствует каким‑то нейробиологическим процессам, протекающим в моем мозгу, следовательно, в конечном итоге объясняется физическими явлениями. Однако гораздо проще объяснить мою грусть психологическими причинами (узнал плохую новость, потерял дорогое существо, переживаю депрессию и т. п.), чем физикой. А возможно ли объяснить результаты выборов законами квантовой механики? Все в мире – физика, и потому физика – наука обо всем. Но разные явления имеют различную степень сложности, а значит, физика еще не все и не может быть наукой обо всем.

Источник: Философский словарь.

Физика
гр. природа) — наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам подразделяется на физику: элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т.д. К основным разделам теоретической физики относятся: механика, электродинамика, оптика, термодинамика, статистическая физика, теория относительности, квантовая механика, квантовая теория поля. (См. Механика квантовая, Оптика волновая, Оптика геометрическая, Теория относительности, Термодинамика). Начало развития физики связано с именами Демокрита (р. ок. 470до н. э.), Архимеда и др.; в 17 в. И. Ньютон создает классическую механику. В нач. 20 в. рождается квантовая физика М. Планка (1858 — 1947), Э. Резерфорда (1871 — 1937), Н. Бора (1885 — 1962). В 20-x гг. была разработана квантовая механика — теория движения микрочастиц Л. де Бройля (1892 — 1987), Э. Шредингера (1887 — 1961), В. Гейзенберга (1901 — 1976), В. Паули (1900 — 1958), П. Дирака (1902 — 1984). Одновременно появилось новое учение о пространстве и времени — теория относительности А. Эйнштейна (1879 — 1955). Во 2-й пол. 20 в. физическое знание обогащается познанием структуры атомного ядра, свойств элементарных частиц Э. Ферми (1863 — 1945) и др., конденсированных сред Л. Д. Ландау (1908 — 1968) и др. (См. Атом, Частицы элементарные). Физика составляет научный фундамент современной техники и ее развития, включая такие направления, как ядерная энергетика, космическая техника, квантовая электроника, вычислительная техника, разработка наукоемких, ресурсосберегающих технологий.

Источник: Концепции современного естествознания. Словарь основных терминов

Физика
 (греч. — природа) — учение о превращениях и движениях элементарных частиц, о строении атомов вещества, о гравитационных, электрических, магнитных и т. п. полях и о молекулярных процессах. В древности слово «физика» обозначало всю совокупность сведений о природе. Впоследствии под Ф. стали понимать учение о закономерностях движения тел (механика), о причинах звуковых (акустика), тепловых, электрических, магнитных и оптических явлений. Классическая Ф. стремилась свести причины этих явлений к законам механики Ньютона. В 19 в. выяснилось, что Ф. имеет дело со специфическими закономерностями. Термодинамика изучает поведение больших множеств молекул, для к-рых характерен необратимый переход от менее вероятных состояний к более вероятным состояниям, в то время как собственно механические процессы не обладают подобной необратимостью. С др. стороны, в классической электродинамике выросло убеждение о несводимости законов возникновения и распространения электромагнитного поля к законам механики. Т. обр. в 19 в. Ф. эмансипировалась от механики. Вместе с тем механическая теория тепла показала взаимный переход механических процессов в тепловые, а учение об электричестве установило переходы механических процессов в электрические и обратно. В 19 в. было установлено, что механические, тепловые и электромагнитные процессы связаны взаимными переходами при сохранении количественной меры всех этих видов движения — энергии. Принцип сохранения энергии (Сохранения энергии закон) стал основным принципом Ф. В конце 19 — начале 20 в. было обнаружено множество новых, ранее неизвестных физических явлений — возникновение и распространение радиосигналов, рентгеновских лучей, радиоактивность. Вместе с тем в центре физической мысли оказалась обнаруженная Менделеевым периодичность химических свойств элементов. Отыскивая причины этих явлений, Ф. включила новые разделы — атомную и ядерную физику и затем физику элементарных частиц. В теоретической физике в первой половине 20 в. произошел отход от основных классических понятий и идей, связанный с теорией относительности и с квантовой механикой. Экспериментальная физика, достигшая колоссальных успехов, оказывает несравнимое с прошлым воздействие на технику и условия жизни людей. В течение всего своего развития Ф. была тесно связана с философией. В древности физические сведения и гипотезы были составной частью материалистических философских систем. Обобщение физических знаний, выросших на основе развития классической механики, было основой материалистических идей нового времени. В 19 в. в работах Маркса и Энгельса на основе анализа и обобщения физических открытий развивалось учение диалектического материализма. В 20 в. идеалистические направления, так же как и в предыдущие периоды, стремились использовать смену физических представлений для идеалистических, позитивистских выводов (Физический идеализм), но анализ действительного смысла новых физических представлений в работе Ленина «Материализм и эмпириокритицизм» и дальнейшее развитие науки показали, что Ф. дает непререкаемые аргументы в пользу диалектического материализма и что применение философских идей марксизма в физических исследованиях сообщает им новые импульсы и силы для исследования природы

Источник: Философский словарь. 1963

ФИЗИКА
«ФИЗИКА» (??????), позднее название сочинения Аристотеля в 8 книгах, которое в греческих рукописях и у древних комментаторов называется «Лекции по физике» (?????? ????????). Дошедшая до нас редакция принадлежит Андронику Родосскому (1 в. до н. э.), который объединил относительно самостоятельные сочинения: кн. 1, 2, 3 и кн. 6, 7, 8. Из них кн. 1-7 датируются (по Е. Дюрингу) концом академического периода (355-347 до н. э.), кн. 8 относится ко 2-му афинскому периоду (336-322).     «Ф.» открывает комплекс естественнонаучных сочинений, структура которого очерчена самим Аристотелем во введении к «Метеорологии», и посвящена фундаментальным принципам и понятиям учения о природе (фюсис). В центре внимания кн. 1 («О началах») - анализ понятия «становления», или «возникновения» (генесис). Основной тезис Парменида: бытие не может возникнуть ни из бытия (в этом случае оно уже есть), ни из небытия и, следовательно, возникновение невозможно, - опровергается заменой понятия небытия-в-себе акцидентальным небытием - еще-не-бытием, не-бытием-чем-то-определенным, или «лишенностью» (отсутствием формы) -(«образованный человек» возникает не из «не-человека», а из «необразованного человека»); «принципами» (архе) возникновения, т.о., оказывается троица «форма - отсутствие формы - материальный субстрат», причем первые два понимаются как «противоположности». В кн. 2 (она была непосредственным продолжением 1-й) формулируется учение о «четырех причинах» (см. «Метафизика», Форма и материя), причем Аристотель, используя языковую семантику слова «фюсис», стремится показать (1-2-я гл.), что каждая из четырех причин выводится из понятия природы: природа-вещество, природа - источник движения (в этой функции аристотелевская «фюсис» заменила платоновскую душу-псюхе), природа-самобытность-эйоос, природа-мастер (телеологический момент). Дальнейшая часть кн. 2 анализирует понятия «случайности» (тюхе), «спонтанности» (?????????) и «необходимости», ее 7-8 гл. имеют основополагающее значение для телеологической концепции природы у Аристотеля. «Природа», по определению, есть «источник движения и изменения», следовательно, необходимо исследовать движение (кн. 5-6, 8), но движение предполагает понятие «континуума», континуум связан с «бесконечным» (апейрон), с другой стороны, «движение невозможно без места, пустоты и времени» (200Ь20) - отсюда предварительный анализ этих понятий в кн. 3-4. 2-я и 9-я гл. кн. 6 содержат знаменитую полемику с апориями Зенона Элейского. Кн. 7 нарушает общий ход изложения и скомпонована из трех несвязных частей (вероятно, Андроником). Кн. 8 - наряду с ? «Метафизики» - основной текст о перводвигателе.     Греческие комментарии к «Ф.» Фемистия, Иоанна Филопона и Симп-ликия изданы в серии CAG (см. библ. к соотв. ст.). Из ср.-век. комментариев следует прежде всего назвать: в Византии - Михаила Пселла, на латинском Западе - Фому Аквинского: In octo libros Physicorum Aristotelis expositio, cura et studio M. Maggiolo, 1954.     Рус. пер.: В. П. Карпова (1936, нов. ред. 1981).     Текст: Aristotelis Physica. Rec. W. D. Ross. Oxf., 1950 (rev. ed. 1960). Переводы: Aristote. Physique. Trad, par H. Carteron. Vol. 1-2. P., 1923 (19612); Aristotle. Physics. Tr. by P. H. Wicksteed and F.M. Cornford. Vol. 1-2. Camb., 1968-1970 (LCL); Aristotle´s Physics. A rev. Text with Introd. and Commentaries by W. D. Ross. Oxf., 1936; Физика. Пер. В. П. Карпова, - Аристотель. Соч.: В 4 т. Т. 3. М., 1981, с. 61-262.     Лит.: Mansion A. Introduction ? la physique Aristot?licienne. Louvain; P., 1946; Solmsen F. Aristotle´s system of the physical world. Ithaca, 1960; Wieland W. Die aristotelische Physik. Gott., 19702; La Physique d´ Aristote et les conditions d´une science de la nature. Actes du Colloque. ?d. Fr. de Gandt et P. Souffrin. P., 1991. См. также лит. к ст. Аристотель.     А. В. ЛЕБЕДЕВ

Источник: Античная философия. Энциклопедический словарь

ФИЗИКА
греч. ?? ?????? – наука о природе, от ????? – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших области – структурную Ф., физику взаимодействий (Ф. поля) и Ф. д в и ж е н и я (механику). Науки, образующие структурную Ф., довольно четко различаются по изучаемым объектам, к-рыми могут быть как элементы структуры вещества (элементарные частицы, атомы, молекулы), так и более сложные образования (плазма, кристаллы, жидкости, звезды). По мере открытия новых уровней структуры и состояний вещества объектная область структурной Ф. расширяется. Сейчас она охватывает все известные уровни строения вещества – от элементарных частиц до галактик. Ф. взаимодействий, основанная на представлении о поле как материальном носителе взаимодействия, делится на четыре отдела, соответственно четырем известным видам взаимодействий (сильное, электромагнитное, слабое, гравитационное). Ф. движения (механика) включает в себя классическую (ньютонову) механику, релятивистскую (эйнштейновскую) механику, нерелятивистскую квантовую механику и релятивистскую квантовую механику. Особое место в совр. системе физич. наук занимает с т а т и с т и ч. Ф., представляющая собой теорию поведения ансамблей – совокупностей большого количества частиц (см. Статистические и динамические закономерности). Будучи основана на определ. предположениях о структуре ансамблей и характере взаимодействия и движения частиц ансамбля, статистич. Ф. сочетает в себе черты всех трех осн. областей Ф. Ее методы применяются во всех разделах Ф. При решении конкретных физич. задач вопросы, связанные с выяснением структуры, взаимодействия и движения, тесно переплетаются. Так, Ф. атома, будучи разделом структурной Ф., необходимо включает в себя конкретные представления о характере движения и взаимодействия образующих атом частиц – ядра и электронов, т.е. может рассматриваться с т. зр. и Ф. взаимодействий и Ф. движения. Тем не менее приведенное подразделение комплекса физич. наук имеет определ. смысл, ибо выявляет те осн. категории, к-рые играли роль общих методологич. средств построения физич. картины мира на всех этапах истории Ф. Изложенная т. зр. на предмет Ф. не является единственной. Часто Ф. определяют как науку о таких формах материи ("первичных", "элементарных"), к-рые входят в состав любых материальных систем, о структуре этих форм, их взаимодействии и движении. В этом случае структуру самой Ф. определяют, исходя из многообразия исследуемых в ней форм материи и характерных для них видов движения (Ф. атома, Ф. твердого тела, Ф. тяготения, Ф. колебаний и т.д.), и специально выделяют такие ее разделы, к-рые охватывают вое многообразие явлений, происходящих при нек-рых определ. условиях, – Ф. низких температур, Ф. сверхвысоких давлений и т.п. (подробнее о др. подходах к определению предмета Ф. – см. И. В. Кузнецов, К вопросу об определении предмета совр. Ф., в кн.: Нек-рые философские вопросы естествознания, М.. 1957; С. И. Вавилов, Физика, Собр. соч., т. 3, М., 1956, с. 148–64; А. Ф. Иоффе, Физика, БСЭ, 2 изд., т. 45, М., 1956; Физика, в кн.: Физический энциклопедический словарь, т. 5, М., 1966). Обладая наиболее развитыми математическими и экспериментальными средствами исследования, Ф. занимает ведущее место среди естеств. наук. Ее представления, результаты и методы используются всеми без исключения естеств. науками. Это приводит к образованию многочисленных "стыковых" дисциплин (геофизика, физич. химия, химич. Ф., астрофизика, биофизика и т.п.). Сама же Ф. вырабатывает свои средства с помощью философии (методологич. средства), математики (матем. аппарат физич. теорий) и техники (экспериментальные средства), оказывая обратное влияние на развитие этих областей знания. Уже в глубокой древности возникли зачатки знаний, впоследствии вошедшие в состав Ф. и связанные с простейшими представлениями о длине, тяжести, движении, равновесии и т.п. В недрах греч. натурфилософии сформировались зародыши всех трех частей Ф., однако сначала на первом плане стояла Ф. движения, понимаемого в самом широком смысле – как изменение вообще. Взаимодействие отд. вещей трактовалось наивно-антропоцентрически (напр., мнение об одушевленности магнита у Фалеса). Подробное рассмотрение проблем, связанных с анализом движения как перемещения в пространстве, впервые было осуществлено в знаменитых апориях Зенона Элейского. В связи с обсуждением структуры первоначал зарождаются и конкурируют концепции непрерывной делимости до бесконечности (Анаксагор) и дискретности, существования неделимых элементов (атомисты). В этих концепциях закладывается понятийный базис будущей структурной ?. В связи с задачами анализа простейшей формы движения (изменения по месту) возникают попытки уточнения понятий "движение", "покой", "находиться в...", "место", "время", "движение", "пустота". Результаты, полученные на этом пути, образуют основу понятийного аппарата будущей Ф. движения – механики. При сохранении антропоморфных тенденций у атомистов четко намечается понимание взаимодействия как непосредств. столкновения осн. первоначал – атомов. Полученные умозрит. путем достижения греч. натурфилософии вплоть до 16 в. служили единств. средствами построения картины мира в науке. Матем. средства (в основном геометрические) служили при этом лишь для описания наблюдений и иллюстрации словесных рассуждений. Эксперимент существовал лишь в виде отд. зачатков (эмпирики). Превращение Ф. в самостоят. науку обычно связывается с именем Галилея. Осн. задачей Ф. он считал эмпирич. установление количеств, связей между характеристиками явлений и выражение этих связей в матем. форме с целью дальнейшего исследования их матем. средствами, в роли к-рых выступали геометрич. чертежи и арифметич. учение о пропорциях. Использование этих средств регулировалось сформулированными им осн. принципами и законами (принцип относительности, принцип независимости действия сил, закон равноускоренного движения и др.). Достижения Галилея и его современников в области Ф. движения (Кеплер, Декарт, Гюйгенс) подготовили почву для работ Ньютона, приступившего к оформлению целостного предмета механики в систему понятий. Продолжая методологич. ориентацию на принципы, а не на скрытые причины (hypothesis non fingo), Ньютон сформулировал три закона (аксиомы) движения и вывел из них ряд следствий, трактовавшихся прежде как самостоят. законы. Ньютоновские "Математические начала натуральной философии" подвели итоги работы по установлению смысла и количеств. характеристик осн. понятий механики – "пространство", "время", "масса", "количество движения", "сила". Для решения задач, связанных с движением, Ньютон (вместе с Лейбницем) создал дифференциальное и интегральное исчисления, одно из самых мощных матем. средств Ф. Начиная с Ньютона и вплоть до конца 19 в. механика трактуется как общее учение о движении (понимаемом как перемещение в пространстве) и становится магистральной линией развития Ф. С ее помощью строится Ф. взаимодействий, где конкурируют концепции близкодействия и дальнодействия. Потребности концепции близкодействия вызвали к новой жизни антич. представления об эфире (Декарт). Успехи небесной механики, основанные на ньютоновском законе всемирного тяготения, способствовали победе концепции дальнодействия (согласно к-рой гравитац. взаимодействие между частицами вещества осуществляется мгновенно и непосредственно через пустоту с помощью дальнодействующих сил). По образцу теории тяготения строилась и Ф. взаимодействий в области электричества и магнетизма (Кулон). Успехи гидродинамики (Бернулли, Эйлер) способствовали внедрению в Ф. идей непрерывности на основе представлений о невесомых жидкостях (флюидах). Как флюиды трактовались электричество, магнетизм и теплота. Юнг и Френель развивали теорию света как волн в непрерывном эфире, также рассматривавшемся как флюид. Начиная с Дальтона, введшего понятие атомного веса, атомистика отделяется от философии, а химия обретает статус фундаментальной науки. Представления об атомах и молекулах, перенесенные из химии в Ф., постепенно вытеснили невесомые флюиды. Юнг (1816) дал первую количеств. оценку размеров молекулы. Усилиями Бернулли, Клаузиуса, Максвелла была построена (в опоре на статистич. представления) кинетич. теория газов, дальнейшее развитие к-рой Больцманом и Гиббсом позволило объяснить тепловые явления без помощи теплорода. С Фарадея начинается интенсивное развитие Ф. электричества и магнетизма на основе идеи близкодействия. Переход от электростатики к электродинамике (Фарадей, Эрстед, Ампер) позволил объединить электрические и магнитные явления. Фарадеевские представления о поле как особом состоянии эфира были оформлены Максвеллом в строгую матем. теорию, к-рая с единой т. зр. трактовала электрические, магнитные и оптич. явления. К концу 19 в. Ф. представляла собой развитый комплекс дисциплин, объединенных идеей сохранения и превращения энергии (см. Сохранения принципы). Мн. ученым Ф. казалась принципиально завершенной наукой. Филос. фоном ее было механистич. мировоззрение, представлявшее собой синтез атомизма с доктриной лапласовского детерминизма. Вероятностные представления статистич. Ф. трактовались как всецело обусловленные незнанием точных значений начальных импульсов и координат частиц, составляющих ансамбль. Электромагнитные явления многими еще не считались автономными – усилия большинства ученых были направлены на сведение их к механич. явлениям путем построения хитроумных моделей эфира. Внутр. противоречия, возникшие при теоретич. объяснении результатов нек-рых опытов в рамках классич. картины мира, привели к возникновению новых, неклассич. направлений релятивистской и квантовой Ф. Релятивистская Ф., возникшая из необходимости объяснить отрицат. результат опыта Майкельсона (спец. относительности теория) и факта равенства инертной и тяжелой массы (общая теория относительности), стала Ф. быстрых движений и сильных гравитац. полей. Квантовая теория, появившаяся в связи с парадоксами объяснения наблюдаемого распределения энергии в спектре излучения абсолютно черного тела (Планк, 1900) явлениями фотоэффекта (Эйнштейн, 1905) и противоречиями планетарной модели атома (Бор, 1913), стала общей теорией взаимодействия и движения микрообъектов. В связи с этим претерпела радикальные изменения вся физич. картина мира. В Ф. движения спец. теория относительности (Эйнштейн, 1905) сделала ненужным представление об эфире как абс. системе отсчета. Это дало возможность и в Ф. взаимодействий отказаться от эфира и приписать полю самостоят. существование. Сначала теоретически, а затем экспериментально и промышленно (ядерная энергетика) установленные связь массы и энергии (Е=mс2), а также зависимость массы движущегося тела от скорости его движения покончили с резким противопоставлением материи и движения, характерным для классич. Ф. Постулат о постоянстве скорости света во всех инерциальных системах отсчета и распространение принципа относительности на электромагнитные явления показали относительность количеств, определенности пространственных и врем. промежутков. Это привело к понятию единого четырехмерного пространственно-врем. континуума и ликвидировало разобщенность понятий пространства и времени, свойственную классич. механике. Общая теория относительности (Эйнштейн, 1916), интерпретировавшая поле тяготения как искривление пространства-времени, обусловленное наличием материи, перекинула еще один мост от материи и движения к взаимодействию. Создание в 20-х гг. 20 в. квантовой механики, основанной на представлении о дискретной природе действия (существование миним. кванта действия ?) (Бор, Борн, Гейзенберг, де Бройль, Шредингер, Паули и др.), привело к дальнейшему изменению представлений о движении и взаимодействии, сделав невозможным применение понятия траектории к анализу движения микрообъектов. Релятивистская квантовая механика (Дирак, Паули, Гейзенберг, В. А. Фок, Дайсон, Р. Фейнман, Ю. Швингер и др.), наряду с пространств.-врем. перемещением элементарных частиц, сохраняющим их тождественность и регулируемым законами сохранения энергии и импульса, стала рассматривать их взаимопревращения (см. Микрочастицы). Все эти, как и др. законы сохранения, являются в совр. Ф. следствиями общих свойств симметрии пространства-времени и взаимодействий. В области структурной Ф. квантовые представления привели к тому, что концепция абсолютно элементарных, неделимых единиц структуры – атомов, уступила место представлениям об относительности понятий элементарности и сложности, о чем в свое время говорил еще Ленин. Релятивистская квантовая теория поля, объединив в едином понятии квантованного поля понятия частицы и поля, преодолела резкое противопоставление пространств. дискретности вещества (взаимодействующих частиц) и пространств. непрерывности поля (переносчика взаимодействия), характерное для классич. Ф. и сохранившееся в нерелятивистской квантовой механике. Изменились и др. связи структурной Ф. с Ф. взаимодействий. В классич. Ф. (включая релятивистскую) результаты взаимодействия целиком определялись пространств.-врем. структурой взаимодействующих объектов (координатами и скоростями – для частиц, напряженностью или потенциалом в каждой точке пространства и законом изменения их во времени – для полей). Знание характеристик элементов структуры позволяло определить состояние системы в целом. Т.о., Ф. взаимодействий была логически вторичной по отношению к структурной Ф. В современной квантовой Ф. дело обстоит наоборот – на первый план выдвинулась Ф. взаимодействий и ответ на вопрос о строении микрообъектов определяется результатами взаимодействия данной микрочастицы с другими. В связи с этим существенно изменились требования к способу задания состояния микрообъектов в теории. Во-первых, волновая функция относится к системе в целом. Во-вторых, энергетически-импульсные характеристики микрообъектов (потенциальные характеристики их взаимодействия) в квантовой механике являются логически равноправными и, что особенно важно, независимыми по отношению к их пространств.-врем. характеристикам. Наиболее отчетливо логич. первичность взаимодействия по сравнению с пространств.-врем. структурой проявляется в Ф. элементарных частиц. Если в Ф. атома и атомного ядра характеристикам взаимодействия еще могут быть сопоставлены пространств.-врем. модели взаимодействующих объектов (типа боровских орбит, распределения плотности заряда в атомах, различных моделей ядра), дающие нек-рую пространств.-врем. картину механизма взаимодействия, то в Ф. элементарных частиц это можно сделать в гораздо меньшей степени. Элементы структуры атома (ядро и электроны) и атомного ядра (протоны и нейтроны) еще могут считаться существующими "в недрах" исходных частиц до взаимодействия, к-рое приводит лишь к перераспределению этих элементов. Элементарные частицы до взаимодействия могут рассматриваться состоящими из двух элементарных частиц лишь весьма условно. Это находит свое выражение в понятии "виртуальности" элементов структуры элементарных частиц: виртуальные частицы как элементы структуры реальных элементарных частиц характеризуют лишь возможные результаты порождения новых реальных элементарных частиц при взаимодействии исходных реальных частиц. Еще более виртуальными являются т.н. квазичастицы в Ф. полупроводников и Ф. твердого тела, позволяющие трактовать возбуждение состояния макротел как результат существования, движения и взаимодействия квазичастиц. Как и многие другие модельные представления, квазичастицы служат для теоретич. объяснения макроскопически наблюдаемых явлений в твердых и жидких телах. Т.о., совр. теория структуры элементарных частиц приобретает существенно динамич. характер. По сути дела, современная квантовая Ф., вскрыв ограниченность пространств.-врем. описания микромира на языке классич. понятий координаты и скорости, дала более глубокое его описание на языке ?-функции и ограничила свои задачи описанием и предсказанием всех возможных макроскопически наблюдаемых результатов взаимодействия. Эта черта совр. Ф., считающаяся мн. учеными временной, наиболее ярко проявляется в формализме s-матрицы, представляющем собой физич. воплощение кибернетич. идей "черного ящика". Совр. Ф. взаимодействий значительно расширила свою объектную область, включив в рассмотрение, наряду с гравитационными и электромагнитными, сильные (ядерные) и слабые (?-распадные) взаимодействия, проявляющиеся только в микромире. Факт наличия четырех существенно различных видов взаимодействий постоянно поддерживает зародившиеся еще в классич. Ф., но пока безуспешные стремления построить общую теорию поля. В статистич. Ф., куда также проникли квантовые идеи о движении и взаимодействии, оформляется в самостоят. ветвь статистич. Ф. процессов (физич. кинетика). Достижения Ф. в 20 в. значительно повлияли на конкретные представления о смысле таких филос. категорий, как материя, движение, пространство и время. К числу фундаментальных достижений совр. Ф., имеющих общефилос. значение, относится также установление принципа относительности свойств материальных объектов. Это связано с последоват. учетом в понятийном аппарате теории роли материального окружения объекта (в первую очередь измерит, прибора и системы отсчета) в деле определения этих свойств. Классич. Ф. считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Уже теория относительности вскрыла количеств. относительность таких свойств объектов, как длина, время жизни, масса, зависящих, как оказалось, не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количеств, определенность свойств объекта должна быть отнесена не к нему "самому по себе", а к системе "объект+система отсчета", хотя носителем качеств. определенности свойств по-прежнему оставался сам объект. Квантовая теория пошла еще дальше в этом направлении, выдвинув идею дополнительности (см. Дополнительноcти принцип). Существование дополнит. свойств, не объяснимое с т. зр. принципа абсолютности свойств, получает естеств. объяснение с помощью принципа относительности свойств. С т. зр. последнего, термин "свойство объекта" следует рассматривать в плане "виртуальности" – как характеристику потенциальных возможностей объекта, к-рые реализуются только при наличии второго объекта, взаимодействующего с первым. С квантовой Ф. связано также гораздо более широкое понимание причинности, опирающееся на отказ от характерного для классич. Ф. предположения, что в основе статистич. закономерностей всегда лежат однозначно определенные динамич. закономерности. В концептуальных рамках релятивистской и квантовой теорий развитие Ф., для к-рого характерны все более последоват. отказ от применимости классич. представлений "в малом", все более абстрактная характеристика состояния, все меньшая наглядность, продолжается и в наст. время. Принципы и представления этих теорий служат фундаментом как для решения прикладных физико-технических и пром. задач (строительства ускорителей, реакторов, термоядерных установок и атомных электростанций), так и для формирования новых представлений о структуре, взаимодействии и движении при экстраполяции принципов на новые объектные области – в квантовой радиофизике, Ф. полупроводников, Ф. сверхпроводимости, Ф. плазмы, астрофизике и т.д. Задача синтеза релятивистских и квантовых принципов является одной из основных и до сих пор не решенных задач Ф. элементарных частиц, представляющей передний край современной теоретической и экспериментальной Ф. В области экспериментальной Ф. осн. проблемы состоят, с одной стороны, в осуществлении целенаправленных экспериментов по проверке гипотез о структуре, строении и взаимодействии элементарных частиц, выдвигаемых физиками-теоретиками. С др. стороны, ведется поиск технич. средств, к-рые позволили бы проверить справедливость квантовых и релятивистских принципов на новой объектной области, ранее не доступной экспериментальному изучению (эксперименты с частицами высоких энергий – встречные пучки, космич. лучи). В теоретич. Ф. осн. круг собственно физич. проблем связан с исследованием формальной структуры матем. аппарата, используемого в теории (попытки аксиоматизации теории поля, вопросы сходимости ряда в теории возмущений и т.п.). Осн. методами, используемыми в новейшей теоретич. Ф., являются теория поля, метод s-матрицы и теория групп. Они различаются как выбором матем. аппарата, так и предъявляемыми к нему требованиями. В теории поля, использующей для построения матем. моделей аппарат алгебры операторов в гильбертовом пространстве, упор делается на строгое матем. осмысливание теории, а не на детальное сравнение с опытом. В основе метода s-матрицы лежит матем. аппарат теории функций комплексного переменного. Оперирование матем. аппаратом производится без опоры на наглядные модельные представления, на основе аксиоматич. требований, предъявляемых к матем. характеристикам s-матрицы (аналитичность, унитарность и т.д.), связывающей состояния до и после взаимодействия. Этот метод в его совр. виде занимает промежуточное положение между случаем, когда создание строгой теории признается более важным (как в теории поля), нежели использование ограниченных и формальных методов (как в теории групп), и случаем, когда поиск ведется вне рамок к.-л. единой методич. концепции путем простого подбора тех или иных моделей с последующим отбрасыванием неудачных вариантов (как в ядерной Ф.). Методы теории групп, основанные на учете связи типа симметрии состояния физич. объектов с инвариантами групп преобразований, позволили построить ряд абстрактных теорий симметрии сильно взаимодействующих частиц (адронов) – теорию SU3-симметрии, SU6-симметрии и т.п. Эти теории не используют никаких модельных представлений и опираются только на отвлеченные свойства групп. Будучи основаны на глубоких матем. идеях, подобно теории поля, методы теории групп, в отличие от нее, покоятся на прочной экспериментальной основе. Однако, выделяя только те аспекты природы, к-рые удается понять в рамках абстрактной симметрии, эти методы не дают возможности осмыслить численные значения времени жизни частиц и характер их взаимодействий. Поэтому громадный объем экспериментальных фактов (в т.ч. все, относящиеся к легким частицам – лептонам) находится вне поля зрения этих методов. Все три упомянутых метода остаются слишком ограниченными, отрывочными и неопределенными и поэтому рассматриваются ведущими физиками как предварит. достижения на пути к более общей теории, способы построения к-рой пока не ясны. Методологич. проблемы новейшей Ф. так или иначе связаны с анализом роли матем. аппарата в построении физич. теорий. Это обусловлено существ, отличием характера использования математики в совр. Ф. В классич. Ф. теория обслуживала эксперимент, а матем. язык служил лишь рафинированным средством о п и с а н и я эмпирич. связей и о б ъ я с н е н и я их с помощью разного рода моделей (напр., как в случае отношения эмпирич. законов Бойля–Мариотта, Шарля и Гей-Люссака к распределению Максвелла, основанному на атомно-молекулярной модели строения вещества). Совр. Ф. отличается широким использованием математической гипотезы как метода исследования (хотя сам этот метод зародился уже в классич. Ф.), причем часто без опоры на модельные представления, руководствуясь почти исключительно матем. требованиями к характеру осн. уравнений. Это выдвигает теоретич. уровень исследования на первое место по сравнению с эмпирическим, за к-рым остаются только функции контроля – принципиальная проверка и количеств, уточнение результатов, полученных с помощью матем. гипотезы на теоретич. уровне. В случае успеха существование объектов или их характеристик, предположенное на теоретич. уровне, подтверждается эмпирически, что приводит к открытию новых частиц или эффектов. Именно таким путем были открыты в Ф. позитрон (первоначально предсказанный теоретически на основании интерпретации результатов решения уравнения Дирака), несохранение четности в слабых взаимодействиях (опыты By по проверке гипотезы Ли и Янга), ?–-мезон (на основании предсказания теории SU3-симметрии). Ряд объектов, возможность существования к-рых следует из нек-рых матем. гипотез, до сих пор экспериментально не обнаружены – гравитац. волны (их существование вытекает из интерпретации результатов определ. способа решения уравнений общей теории относительности), монополь Дирака (изолированный магнитный полюс, существующий согласно интерпретации одного из вариантов матем. оформления электродинамики), кварки (гипотетич. суперэлементарные частицы) и др. Методологич. тенденция, идущая от классич. Ф., предписывает искать для каждого матем. выражения, фигурирующего в теории, соответствующий ему фрагмент физич. реальности. Эта тенденция может быть названа онтологической, ибо в ней в качестве принципа интерпретации провозглашается своеобразный принцип параллелизма между матем. формой и физич. содержанием теории. Согласно этому принципу, матем. аппарат теории непосредственно отражает (изоморфно или гомоморфно) объекты, свойства и отношения реального мира как таковые, так что матем. символы являются знаками элементов реальности, а структура матем. выражений воспроизводит структуру реального мира физич. объектов и их взаимодействий. С этой методологич. тенденцией в совр. Ф. успешно конкурирует тенденция к эмпирич. интерпретации матем. аппарата физич. теории. Принцип такой интерпретации иногда называют "началом принципиальной наблюдаемости". При эмпирич. интерпретации матем. символы теории трактуются как обозначающие результаты реальных эмпирич. процедур, причем физич. смыслом обладают далеко не все из символов. Нек-рые из них, служащие промежуточным средством для вычислений, не получают никакой интерпретации и рассматриваются как вспомогательные. Последоват. приверженцы эмпирия, интерпретации единственно достаточным условием истинности физич. теории считают ее способность к предсказаниям, оправдывающимся на опыте, и не делают из факта успешности подобных предсказаний вывода о сходстве структуры матем. аппарата теории со структурой реальности. Наиболее последовательно принцип эмпирич. интерпретации осуществляется совр. Ф. в методе s-матрицы. Выражением борьбы тех же принципов интерпретации является полемика вокруг интерпретации квантовой механики (точнее, ее матем. аппарата). Так, ?-функция, задающая состояние микрообъектов, интерпретируется сторонниками онтологич. интерпретации (Д. Бом, Л. до Бройль, А. Яноши и др.) как отображение нек-рого объективно существующего волнового поля. Сторонники же эмпирич. интерпретации (копенгагенская школа и ее разновидности) считают ?-функцию лишь промежуточным средством расчета результатов реальных экспериментов. С проблемой интерпретации в совр. Ф. тесно связана проблема реальности – проблема принципов построения картины мира. Обычно эту картину строят на базе принципов онтологич. интерпретации – путем онтологизации матем. аппарата теории (именно так появились в совр. Ф. представления о двойственной корпускулярно- волновой природе микрообъектов, о кварках и т.п.). При этом изменение вида используемого в теории матем. аппарата влечет за собой изменение онтологич. представлений. Иногда онтологизируются не матем. выражения, а модельные представления, управляющие оперированием с этими выражениями (как, напр., в ядерной Ф.). Полученная подобным способом физич. картина мира считается образом реальности, лежащей на ненаблюдаемом уровне. Сторонники эмпирич. интерпретации склоняются к тому, чтобы употреблять термин "реальность" и конкретизировать его смысл только на эмпирич. уровне исследования, принципиально отказываясь придавать онтологич. смысл гипотезам о характере непосредственно не наблюдаемых объектов. Промежуточной является позиция М. Борна, считающего образами реальности инварианты, фигурирующие в матем. аппарате теории. Поиск "сумасшедших идей", столь актуальный в совр. Ф., с т. зр. проблемы реальности представляет собой проблему существенно новых принципов построения физич. картины мира, к-рые позволили бы придать теории элементарных частиц логич. замкнутость и полноту. Большинство ученых считает, что принципов квантовой механики и теории относительности недостаточно для осуществления этой цели. Однако отсутствие ощутимых успехов в преодолении этой недостаточности вынуждает при решении конкретных задач до сих пор ограничиваться лишь незначит, модификациями квантово-релятивистского концептуального аппарата, не затрагивающими его принципиальных основ. Лит.: Дюгем П., Физич. теория, ее цель и строение, пер. с франц., СПБ, 1910; Планк М., Физич. очерки, пер. с нем., М., [1925]; Гейзенберг В., Филос. проблемы атомной Ф., пер. [с англ.], М., 1953; его же, Ф. и философия, пер. с нем., М., 1963; Кудрявцев П. С, История Ф., [2 изд.], т. 1–2, М., 1956; Лауэ М., История Ф., пер. с нем., М., 1956; Нильс Бор и развитие физики. Сб. [ст.], М., 1958; Очерки развития осн. физич. идей. Сб. ст., М., 1959; Филос. вопросы совр. физики. Сб. ст., М., 1959; Бор Н., Атомная Ф. и человеч. познание, пер. с англ., М., 1961; Бройль Л. де, По тропам науки, пер. с франц., М., 1962; его же, Революция в Ф., пер. с франц., 2 изд., М., 1965; Теоретич. физика 20 века, М., 1962; Над чем думают физики, вып. 1–4, М., 1962–65; Развитие совр. Ф. Сб. ст., М., 1964; Борн ?., ?. в жизни моего поколения. Сб. ст., М., 1963; Филос. проблемы Ф. элементарных частиц, М., 1963; Спасский Б. И., История Ф., ч. 1–2, М., 1963–64; Эйнштейн ?., ?. и реальность. Сб. ст., пер. с нем. и англ., М., 1965; Ландау Л. Д., Лифшиц В. М., Теоретич. физика, 2 изд., т. 1–9, М., 1965; Фейнмановские лекции по Ф., [пер. с англ.], вып. 1–8, М., 1965–66; Кузнецов Б. Г., Развитие физич. идей от Галилея до Эйнштейна в свете совр. науки, 2 изд., М., 1966; Эйнштейн ?., Инфельд Л., Эволюция Ф., пер. с англ., 4 изд., [М.], 1966; Campbell N. R., Physics. The elements, Camb., 1920; Lenzen V. Г., The nature of physical theory, N. Y., 1931; Bridgman P. W., The nature of physical theory, Princeton, 1936; Planck M., The philosophy of physics, N. Y., [1936]; Stebbing L. S., Philosophy and the physicists, L., [1937]; Frank Ph., Between physics and philosophy, Camb., 1941; Destouches J. L., Principes foundamentaux de physique th?orique, P., [1942]; Lindsay R. В., Margenau H., Foundations of physics, [5 ed.], N. Y.–L., [1947]; Eddington ?., The philosophy of physical science, Camb., 1949; Margenau H., The nature of physical reality, N.Y., 1950; Destouches-F?vrier P., La structure des th?ories physiques, P., 1951; Weizs?cker C.F. von, Zum Weltbild der Physik, 6 Aufl., Stuttg., 1954. И. Алексеев, Ю. Румер. Новосибирск.

Источник: Философская Энциклопедия. В 5-х т.

Найдено научных статей по теме — 15

Читать PDF
254.30 кб

Современные проблемы дисциплинарных онтологии (физика, техника)

Данилова В. С., Кожевников П. П.
Рассмотрены основные понятия дисциплинарных онтологии физики и техники. Проанализированы основные идеи и концепции, определяющие специальные научные картины мира.
Читать PDF
3.51 мб

Физика и метафизика в философии Платона

Лебедев С. П.
Читать PDF
354.15 кб

Математическая физика и эволюционная биология

Гладышев Г. П.
The article is dedicated to discourses, that the mathematical physics unable to describe the evolutional biological phenomenona with generalized position «nonlinear natural science»
Читать PDF
222.27 кб

Физика и «Маржиналистская революция»

Майровски Ф.
Математик изобретатель, а не открыватель. Витгенштейн [78, С. 52] Перевод А.А. Оганесян, научный редактор перевода В.М. Ефимов
Читать PDF
199.82 кб

Физика памяти: от апериодических кристаллов и «Динамики информации» Б. Б. Кадомцева к супервенции вр

Тулинцев А. Е.
Читать PDF
93.22 кб

Буддизм и физика

Рутковская М. В.
В статье рассматривается аналогия представлений древней буддийской практики Алмазного пути и квантовой механики по проблеме пустоты.
Читать PDF
306.65 кб

98. 02. 033. Карпенко Ю. П. Богословие, психофизика и теоретическая физика. (научно- аналитический о

Читать PDF
120.69 кб

2007. 04. 004. Свозил К. Фейерабенд и физика. Svozil K. Feyerabend and Physics. - mode of access: ht

Карабаджак А. Г., Панченко А. И., Яковлев В. А.
Читать PDF
311.31 кб

2008. 02. 003. Владимиров Ю. С. , яковлев В. А. Физика и Метафизика. (аналитический обзор)

Читать PDF
292.20 кб

97. 02. 004-011. Физика, философия и научное сообщество. (сводный реферат)

Панченко А. И.
Читать PDF
69.96 кб

Современная физика и проблема развития

Рыбальченко Валерия Анатольевна
Выявлена эволюционная роль уравнений Эйнштейна, определяющих концепцию развития в физике.
Читать PDF
950.65 кб

Так что же «Рожает» физика, или философские дебаты о естествознании глазами непредвзятого исследоват

Ярцев Рустэм Альбертович
Оспаривается попытка марксистского автора представить содержание данной полемики как борьбу материализма и идеализма, а также достоверность его выводов об однозначной предпочтительности диалектического материализма над другими уче
Читать PDF
627.67 кб

Физика – «Партийная Наука»?

Баранец Наталья Григорьевна, Веревкин Андрей Борисович, Горшкова Анастасия Владимировна
В статье анализируется идеологическое противостояние в советском физическом сообществе. Очерчены доктринальные и идеологические аспекты конфликта 1920-х–1940-х гг.
Читать PDF
122.31 кб

Физическая реальность: трансцендентальная физика или экспериментальная метафизика

Панченко Александр Иванович
В качестве сверхчувственной составляющей физической реальности мы обнаруживаем не только идеи и концепции, но и объективную реальность, т.е. бытие, которое определяется не только человеком.
Читать PDF
0.00 байт

Физика причинно-следственных свойств пространственного физического времени

Пан В. Б.

Похожие термины:

  • Физика и философия

    «ФИЗИКА И ФИЛОСОФИЯ» («Physik und Philosophic») — книга В. Гейзенберга, представляющая собой переработанный текст лекций по философским проблемам современной физики, прочитанный автором в зимний семестр 195
  • Психология и физика

    Итак, если физика - эмпирическая наука, утверждения которой подтверждаются или опровергаются наблюдением, то в физику следует включить законы, соединяющие стимул и реакцию. Сейчас такие законы от
  • Физика и реальность

    «ФИЗИКА И РЕАЛЬНОСТЬ» — сборник статей А. Эйнштейна, написанных в разные периоды его творческой жизни. Рус. издание — М., 1965. В книге нашли отражение основные эпистемологические и методологические
  • Классическая физика

    Область физики, предшествовавшая появлению основ квантовой физики. В классическую физику входят законы Ньютона, их причины и следствия. Она дает представление о познаваемой, а значит, и предсказу
  • Физика математическая

    теория математических моделей физических явлений.
  • Квантовая физика

    Теория, выдвинутая в 1900 г. Максом Планком и гласящая, что энергия существует не в виде непрерывно изменяющейся величины, а разбита на отдельные, т. е. дискретные порции, или частицы. Планк назвал эти
  • Статистическая физика

    раздел физики, изучающий свойства коллективов частиц (от «элементарных» частиц до галактик). Уже в классической С. ф., края имеет дело с частицами, подчиняющимися законам классической механики, обн
  • СОЦИАЛЬНАЯ ФИЗИКА

    physique sociale), термин, применявшийся для обозначения обществоведения в 17 в. В 19 в. его употреблял Кетле и до 1839 - Конт, к-рый позже назвал эту науку социологией.
  • Физика элементарных частиц

    Раздел физики, изучающий мельчайшие частицы, составляющие вещество, и взаимодействия между ними. В атомной физике элементарными частицами называют структурные элементы, из которых построены ато
  • КВАНТОВАЯ МЕХАНИКА И КЛАССИЧЕСКАЯ ФИЗИКА

    две физические теории, по поводу которых ведутся острые дискуссии. Н. Бор (см.) полагал, что «как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные долж
  • НЕКЛАССИЧЕСКАЯ ФИЗИКА: ОНТОЛОГИЧЕСКИЕ ОСНОВАНИЯ

    Вопрос об онтологических основаниях неклассической физики связан с утратой механической картиной мира (МКМ) на границе XIX и XX вв. статуса основы научного миропонимания. Накопление новых эмпиричес
  • Плазма в физике

    Газ, в котором при очень высокой температуре все электроны оторваны от своих атомов, называется плазмой. Иными словами, плазма — это высокоионизованный (с электрическими зарядами) газ, содержащий
  • Физико-теологический

    Физико-теологическим называют доказательство бытия Божия, основывающееся преимущественно на целесообразном устройстве произведений природы; целесообразность же сама по себе ведет к предположе
  • Физикализм

    один из принципов позитивизма, разработанный Р. Карнапом, который язык физики рассматривал как универсальный язык науки вообще.
  • ФИЗИКАЛИСТСКАЯ КАРТИНА МИРА

    (physikalisches Weltbild) — представление о мире и мировых процессах, выработанное физикой на основе эмпирического исследования и теоретического осмысления. Физикалистская картина мира следует за ходом ра
  • ДУАЛИЗМ в физике

    (от лат. dualis — двойственный) — двойственная природа к.-л. объекта, явления. Напр., свет имеет двойственную природу: это и электромагнитная волна, и поток световых частиц — фотонов. Двойственная прир
  • МАССА в физике

    (лат. massa — глыба) — мера инерционных (инерции) и гравитационных (гравитации) свойств материи. Инерционные свойства материи при отсутствии сил проявляются в способности тел сохранять покой или рав
  • ПРИНЦИП ОТНОСИТЕЛЬНОСТИ В ФИЗИКЕ

    принцип, в рамках которого учитывается, что законы физики имеют одинаковую форму во всех инерциальных системах отсчета, т.е. системах, движущихся относительно друг друга равномерно и прямолинейно
  • ПРОБЛЕМА НАБЛЮДАТЕЛЯ В НЕКЛАССИЧЕСКОЙ ФИЗИКЕ

    создала новую ситуацию в эпистемологии, связанную с изменением статуса познающего субъекта (наблюдателя/экспериментатора), который в ходе исследования с необходимостью влияет на познаваемое; те
  • Дао физики

    «ДАО ФИЗИКИ» — книга австрийского физика-теоретика Фритьофа Капры (1976; рус. пер.: СПб., 1994). Книга состоит из 18 глав и эпилога. Основная идея автора заключается в выявлении параллелей между эпистемол