АБСТРАКЦИЯАБСТРАКЦИЯ НЕРАЗЛИЧИМОСТИ

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ

Найдено 4 определения термина АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ

Показать: [все] [краткое] [полное] [предметную область]

Автор: [отечественный] Время: [советское] [современное]

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ

одна из осн. абстракций математики и логики, позволяющая исследовать бесконечные совокупности (множества), применяя к ним логич. принципы (в частности, исключенного третьего закон, произвольного выбора принцип и др.), почерпнутые из опыта обращения с конечными совокупностями. А. а. б. состоит в отвлечении от незавершенности и незавершимости процесса образования бесконечного множества, от невозможности задать такое множество полным списком его элементов (в этом смысле А. а. б. состоит в отвлечении от "бесконечности" множества). См. Алгоритм, Математическая бесконечность, Множеств теория. Лит.: [Колмогоров А. Н.], Бесконечность в математике, Большая Советская Энциклопедия, 2 изд., т. 5, М., 1950, с. 73–74; Шанин ?. ?., О некоторых логических проблемах арифметики, М., 1955. В. Успенский. Москва.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Философская Энциклопедия. В 5-х т.

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ

одна из осн. абстракций (идеализации) классич. (теоретико множеств.) математики и классич. математич. логики. Состоит в отвлечении от невозможности полного обозрения к.-л. бесконечного образования (бесконечной совокупности элементов к.-л. рода; знаковых конструкций, возникающих в ходе неограниченно продолжаемого конструктивного процесса; см. Конструктивное направление) и в рассмотрении его в качестве единого объекта - актуально бесконечного множества (напр., множества всех натуральных чисел, континуума точек отрезка, множества всех формул любой длины логич. исчисления), в применении к к-рому можно рассуждать по законам обычной (двузначной) логики и, в частности, применять исключенного третьего принцип и закон снятия двойного отрицания. А. а. б. не используется в интуиционистской математике и логике (см. Интуиционизм) и конструктивном направлении.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Советский философский словарь

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ

основанный на акте творческого воображения способ образования абстрактных понятий, лежащий в основе формирования одной из наиболее сложных разновидностей идеи бесконечности—идеи актуальной бесконечности. В простейшем случае — при рассмотрении какого-либо необрывающегося конструктивного процесса, порождающего объекты определенного типа,—абстракция актуальной бесконечности состоит в отвлечении от принципиальной незавершаемости этого процесса. Представив его как бы «продолженным до конца» и тем самым завершившимся, вводят в рассмотрение его воображаемый результат—множество (совокупность) всех порожденных им объектов. При этом возникшее таким образом множество в дальнейшем начинают трактовать в качестве актуального, «готового» объекта рассмотрения. Так, отправляясь от процесса последовательного порождения натуральных чисел 0, 1,2, .., в результате применения к нему абстракции актуальной бесконечности приходят к актуально бесконечному объекту — натуральному ряду, который в дальнейшем выступает в качестве наличного объекта, равноправного с составляющими его числами. В более сложных случаях аналогичной процедуре подвергаются «процессы» существенно более сложных типов. В результате объектами рассмотрения становятся актуально бесконечные множества элементов произвольной природы, что приводит к необходимости изучения понятия множества как отдельного абстрактного понятия.

В отличие от таких абстракций, в основе которых лежат только акты «чистого» мысленного отвлечения, абстракция актуальной бесконечности существенным образом использует акты творческого воображения, решительного отхода от действительности, и это создает определенные методологические трудности, в частности трудности истолкования суждений о возникающих в результате такого абстрагирования объектах. Эти трудности, связанные с косвенным характером «осязаемости» полученных с применением абстракции актуальной бесконечности объектов, оказываются особенно ощутимыми в тех случаях, когда абстракция актуальной бесконечности применяется многократно и в сочетании с другими идеализациями. В логическом аспекте принятие абстракции актуальной бесконечности ведет к обоснованию классической аристотелевской логики, и в частности исключенного третьего закона.

Особую роль абстракция актуальной бесконечности играет в канторовской «архитектурной программе для математики», предусматривающей построение математики в виде надстройки над созданной им множеств теорией (точнее было бы, следуя самому Кантору, говорить об учении о множествах). Согласно этой программе, получившей в математике самое широкое распространение, всякий математический объект рассматривается как множество, удовлетворяющее определенному условию, и это обстоятельство делает абстракцию актуальной бесконечности основным в рамках данного подхода объектообразующим фактором. Однако в связи с упоминавшимися выше трудностями неограниченное ее применение в качестве правомерного средства образования математических понятий неоднократно вызывало возражения со стороны ряда выдающихся математиков (К. Ф. Гаусс, Л. Кронекер, Д. Гильберт, Г. Вейль и др.). Альтернативные по отношению к канторовской программы построения математики на базе использования одной лишь абстракции потенциальной осуществимости были предложены Л. Э. Я. Брауэром (см. Интуиционизм) и А. А. Марковым (см. Конструктивное направление). Без использования абстракции актуальной бесконечности обходится также и доказательств теория Д. Гильберта.

Лит.: Бесконечность в математике (А. Н. Колмогоров). — БСЭ, т. 3. М., 1970; Рейтинг А. Интуиционизм. Введение. М„ 1965; А. А. О конструктивной математике.—Труды математического института им. В. А. Стеклова, т. 67. М.—Л., 1962; Кантор Г. О различных точках зрения на актуально бесконечное.—В кн.: Он же. Труды по теории множеств. М., 1985.

Н. М. Нагорный

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Новая философская энциклопедия

абстракция актуальной бесконечности

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — основанный на акте творческого воображения способ образования абстрактных понятий, лежащий в основе формирования одной из наиболее сложных разновидностей идеи бесконечности — идеи актуальной бесконечности. В простейшем случае — при рассмотрении какого-либо необрывающегося конструктивного процесса, порождающего объекты определенного типа — абстракция актуальной бесконечности состоит в отвлечении от принципиальной незавершаемости этого процесса. Представив его как бы «продолженным до конца» и тем самым завершившимся, вводят в рассмотрение его воображаемый результат — множество (совокупность) всех порождаемых им объектов. При этом возникшее таким образом множество в дальнейшем начинает трактоваться в качестве актуального, «готового» объекта рассмотрения. Так, отправляясь от процесса последовательного порождения «натуральных чисел» 0,1,2,..., в результате применения к нему абстракции актуальной бесконечности приходят к актуально бесконечному объекту — «натуральному ряду», который в дальнейшем выступает в качестве на-ичного объекта, равноправного с составляющими его натуральными числами.         В более сложных случаях аналогичной процедуре подвергаются «процессы» существенно более сложных типов. В результате объектами рассмотрения становятся актуально бесконечные множества элементов произвольной природы, что приводит к необходимости изучения понятия «множества» как отдельного абстрактного понятия.         В отличие от таких абстракций, в основе которых лежат только акты «чистого» мысленного отвлечения, абстракция актуальной бесконечности существенным образом использует акты творческого воображения, решительного отхода от действительности, и это влечет за собой возникновение определенных методологических трудностей — в частности, трудностей истолкования суждений об объектах, возникающих в результате такого абстрагирования. Эти трудности, связанные с косвенным характером «осязаемости» объектов, полученных с применением абстракции актуальной бесконечности, оказываются особенно ощутимыми в тех случаях, когда эта абстракция применяется неоднократно и в сочетании с другими идеализациями. В логическом аспекте принятие этой абстракции ведет к принятию классической аристотелевской логики, и в частнсти — к принятию «закона исключенного третьего».         Особо важную роль абстракция актуальной бесконечности сыграла в процессе реализации так называемой «теоретико-множественной» программы построения ма тематики, провозглашенной в последней четверти 19 в. Г. Кантором (совместно с Р. Дедекиндом). По этой программе математику предполагалось возвести в виде своего рода «надстройки» над предварительно подготовленным «фундаментом», роль которого Кантором была отведена его «учению о множествах» (Mengenlehre), более известному в широких кругах под не совсем правильным названием «теории множеств», после чего и сам этот фундамент с его «произвольными множествами элементов произвольной природы» объявлялся частью математики.         (Здесь хотелось бы специально подчеркнуть, что непонятно, каким образом в научной литературе, после создания Кантором его «учения (sic!) о множествах» смог возникнуть и утвердиться несомненно претендующий на научность термин «теория (sic!) множеств»: ведь «теория множеств» всюду, где ее изучают, преподается как математическая дисциплина, между тем как ее основное понятие в самом начале курса неизменно провозглашается неопределяемым. Между тем как вопрос о парадоксах — скажем, о парадоксе Рассела, обнаруженном еще в 1902 и не устраненном до сих пор— никак не комментируется, даже если и излагается.)         Согласно канторовской программе, в свое время получившей в математике самое широкое распространение, всякий математический объект надлежало определять как множество, удовлетворяющее таким-то и таким-то условиям, и это обстоятельство делало абстракцию актуальной бесконечности основным в объектообразующим фактором в рамках данного подхода. Однако в связи с упоминавшимися выше трудностями неограниченное ее использование в качестве правомерного средства образования математических объектов неоднократно наталкивалось на неодобрительную реакцию со стороны ряда выдающихся математиков своего времени (К. Ф. Гаусс — еще до Кантора, — Л. Кронекер, А. Пуанкаре, Г. Вейль, и др.). Фундаментальнейшие программы построения математики, альтернативные по отношению к канторовской, где основной упор делался на использование в качестве базы одной лишь абстракции актуальной бесконечности, были предложены Л.Э.Я. Брауэром в его интуиционизме и А.А. Марковым в его конструктивной математике.         Н.М. Нагорный         Лит.: Колмогоров А.Н. Бесконечность в математике. БСЭ. Т. 3. М., 1970; Гейтинг А. Интуиционизм. Введение. М., 1965; Марков А.А. О конструктивной математике. Труды математического института им. В. А. Стеклова. Т. 67. М. — Л., 1962; Кантор Г. О различных точках зрения на актуальную бесконечность. Он же. Труды по теории множеств. М., 1985.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Энциклопедия эпистемологии и философии науки

Найдено схем по теме АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — 0

Найдено научныех статей по теме АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — 0

Найдено книг по теме АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — 0

Найдено презентаций по теме АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — 0

Найдено рефератов по теме АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — 0